Supporting Information

A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cell

Shan Jinac,§, Liangjun Zhouac,§, Zhanjun Gua*, Gan Tiana, Liang Yana, Wenlu Rena, Wenyan Yina, Xiaodong Liua, Xiao Zhangab, Zhongbo Huc, Yuliang Zhaoab,*

aKey Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R.China
bKey Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanosciences and Technology of China, Beijing, 100190, China.
cCollege of Materials Science and Opto-Electronic Technology, Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R.China
dCollege of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
eCollege of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China.
*Corresponding Authors: zjgu@ihep.ac.cn, zhaoyuliang@ihep.ac.cn.
§These authors contributed equally.
Fig. S1 FT-IR spectra of (a) Tween 20-UCNPs and Tween 20; (b) Tween 20-UCNPs@HA and HA. In these four samples, it is clear to find that the strong and broad band around 3430/3491 cm$^{-1}$, corresponding to the O-H stretching vibrations, and the bands centered at 2927/2932 cm$^{-1}$ and 2863/2837 cm$^{-1}$, associated with the asymmetric (ν_{as}) and symmetric (ν_s) stretching vibrations of methylene (-CH$_2$), respectively. Stretching vibrations generated by O-C=O carboxylic group at 1565 cm$^{-1}$ and 1420 cm$^{-1}$ demonstrated the bound oleic acid while disappeared in Tween 20-UCNPs@HA due to strong signal of HA. Moreover, characteristic bands of C=O ester group and C-O-C group belong to Tween 20 are observed in (a) at 1735 cm$^{-1}$ and 1100 cm$^{-1}$, respectively, which are also found in Tween 20-UCNPs but greatly reduced (1733 cm$^{-1}$ and 1109 cm$^{-1}$). The C=O bands (1712 cm$^{-1}$ and 1710 cm$^{-1}$) also could be observed in (b) with three bands (1285 cm$^{-1}$, 1210 cm$^{-1}$ and 1162 cm$^{-1}$) belong to stretching vibrations of C-O-C groups. Band at 1460/1470/1454/1453 cm$^{-1}$ in all spectra attributed to ν_{as} of –CH$_3$ groups. The three bands (998 cm$^{-1}$, 912 cm$^{-1}$ and 814 cm$^{-1}$) observed in (b) are assigned to the deformation vibration of ring hydrogens.$^{1-6}$
Fig. S2 (a) HA Loading amount of UCNPs versus increased concentrations of HA. (b) Cumulative HA released from Tween 20-UCNPs@HA in PBS (pH=7.4) under continuous stirring for different time at 37 °C. All these studies were repeated for three times.
Fig. S3 Luminescent intensity changes of DPBF in acetonitrile (15 μL, 5 mM) dealt with 4 mL dispersion of Tween 20-UCNPs@PSs (2.5 mg/mL; a: HA; b: Ce6; c: ZnPc; d: MB) after 980 nm laser irradiation (0.8 W/cm²) for 10 min. (e) Up-conversion luminescence spectrum and (f) TEM image of NaYbF₄: Er UCNPs used in b-d.

References:

