Supplementary data

Silica-F127 Nanohybrid-encapsulated Manganese Oxide Nanoparticles for Optimized T1 Magnetic Resonance Relaxivity

Benedict You Wei Hsu, a Miao Wang, b Yu Zhang, c Vimalan Vijayaragavan, d Siew Yee Wong, e Alex Yuang-Chi Chang, b Kishore Kumar Bhakoo, d Xu Li *e and John Wang a,c

a NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 28 Medical Drive Singapore 117456. E-mail: msewangj@nus.edu.sg
b Johns Hopkins Singapore International Medical Center, 11 Jalan Tan Tock Seng, Singapore 308433.
c Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1 Singapore 117576.
e Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 3 Research Link Singapore 117602. E-mail: x-li@imre.a-star.edu.sg

Fig. S1 X-ray diffraction trace of MnO nanoparticles (MONPs). The average crystallite size of MONPs (d = 14.4nm) is calculated using the Debye-Scherrer formula.
Fig. S2 Figure S2: FT-IR spectra of oleic acid, manganese oleate and the as-synthesized MONPs. The four characteristic bands of oleyl group –OOC–(CH₂)₇–CH=CH–(CH₂)₇–CH₃ are observed. While the bands at 1555 cm⁻¹ and 1410 cm⁻¹ can be assigned to the asymmetric and symmetric stretching modes of the carboxylate group, the bands at 2925 cm⁻¹ and 2854 cm⁻¹ are due to the symmetric and asymmetric stretching of the CH₂ bond.
Fig. S3 Hydrodynamic size distribution of PEO/SiO$_2$-encapsulated MONPs (PEOMSN), measured by dynamic light scattering (DLS). The average hydrodynamic diameter was determined to be 76.4 nm.

Fig. S4 Wide-scan XPS spectrum of the as-prepared PEOMSN. The inset shows a high-resolution XPS scans of the Mn 2p region.
Fig. S5 Mn-ion leaching experiments. The increase in Mn content of the supernatant of PEOMSN was determined over time.

Fig. S6 TEM images of PEOMSN after 16-hours acidic etch in an acetate buffer solution. Formation of hollow cavities within the encapsulated MONPs is observed.