HEMTs optical response

In the following the electro-optical characteristics of the developed HEMT are reported. In order to verify that the optical response of our devices is consistent with models of photo-HEMTs operation presented in literature, we reproduced the characterization procedure and used the analytical models proposed by Takanashi et al. They reported an increase of drain current with illumination in InAlAs/InGaAs HEMTs and explained this phenomenon by an effective decrease in the potential barrier for electrons between the source and the channel due to the photovoltaic effect.

Driving the device with a fixed source-drain current (I_{ds}) and gate-source voltage (V_g), we measure an increase of channel conductance $\sigma$ with illumination, which is equivalent to a reduction of the threshold voltage of the transistor ($\Delta V_{th}$). This is shown in Fig. S1a where $\sigma$ is plotted (dotted lines) as a function of $V_g$ for different optical powers, expressed by the attenuation factor $\alpha = 10^{-\text{ND}}$ of the incident laser beam (1 mW) applied by Neutral Density (ND) filters. In the same graph we report the trend of $G = d\sigma/dV_g$ (solid lines), which is the equivalent to the transconductance driving the device by a known source-drain voltage instead of current. Since $\sigma$ is a function of $V_g - V_{th}$, it can be shown that the shift of the threshold voltage, compared to dark conditions, is obtained by a linear fit of the conductance variations versus $G$ (Fig. S1b), for $V_g$ values close to $V_{th}$.

Finally we fit the data of threshold voltage variation versus relative irradiance (Fig. S1c) by an analytical model, which assumes a linear relationship between $\Delta V_{th}$ and the open-circuit potential caused by the accumulation of photogenerated holes at the source:
\[ \Delta V_{th} = n \frac{kT}{q} \ln \left( 1 + \frac{nqP}{I_d h\nu} \right) \]

where \( n \) is an empirical proportionality factor, \( kT/q \) is the thermal voltage, \( \eta \) is the quantum efficiency associated with the absorption process in the GaAs channel, \( h\nu \) is the photon energy, \( I_d \) is the dark current for holes, \( q \) is the electron charge and \( P \) is the optical power. As can be seen in Fig. S1c, the model satisfactorily describes the data acquired on our devices.

**Device fabrication flow chart**

We realized, by lithographic techniques, devices for four point probe measurement of 2DEG conductance under illumination. We chose a Hall bar layout, by which also electron population in the epilayer in order to electrically isolate 2DEGs. During this dilute etching process, which creates a dark red area in the sample, the GaAs surface of the contact areas is deoxidized by a 5" dip in dilute HCl and dried via nitrogen blow, just prior to the loading of the sample in the evaporation chamber. A nickel/germanium/gold tri-layer (2060/130 nm-thick) is deposited by e-beam evaporation at a deposition rate of 0.1 nm/s. The Ni layer improves the adhesion to the surface and the Au layer reduces contact resistance, while the Ge layer allows the contacts to diffuse into the sample when annealed. After the lift-off in an ultrasonic bath of acetone first and resist developer (MF319) then, the sample is rinsed in methanol and the annealing process is performed. Ohmic contacts are made by placing the sample on a copper strip, heated by Joule effect up to the temperature of 420° for about 1’, in nitrogen atmosphere.

We fabricated two batches of these devices with slightly different etch solutions based on acids – hydrogen peroxide mixtures work as anisotropic etchants. We use a solution of HSO₄:H₂O₂:H₂O 1:8:40 by volume for 25". The PMMA mask endure this dilute etching process, which creates a significant undercut below resist stripes. The resist is stripped in acetone after etching. The anisotropy of the etching exposes groove sidewalls in the [111]A orientations that, for optimal etching conditions, meet with sharp corners at the bottom of the structure, thus forming an array of V-shaped grooves.

Another UV lithography step is performed to pattern the gate contact. A LOR7B/S1818 bi-layer is spun, exposed and developed. Samples are then loaded in the vacuum chamber for e-gun evaporation of a 180 nm-thick gold layer on top of a thin (3 nm) titanium adhesion layer (deposition rates 0.05 nm/s). After the final lift-off step, the V-groove grating on the active area is conformally coated by gold (Fig. 4a) and electrically connected to the central lead (on the bottom in Fig. 1b), by which it is possible to bias the gate.

Finally the samples are cut and the dies are glued on sockets by a bi-component epoxy resin. Electrical connections between the socket and the pads on the die are realized by a wedge bonder equipment and 12 μm-thick Au wires (Fig. S2).
Estimate of device resolution based on numerical simulations

The sensitivity of the device in terms of film thickness ($t$) coating the gold grating can be expressed as the derivative of the measured quantity (conductance) with respect to the film thickness. Given the logarithmic electro-optical response of the device, equation (2), the sensitivity is calculated as

$$S_t = \frac{\partial \sigma}{\partial t} = m_\sigma \cdot \frac{1}{T} \frac{\partial T}{\partial t} \quad (\text{S2})$$

In order to estimate $S_t$, we get $m_\sigma$ from experimental data ($\sim 3.7 \cdot 10^{-5} \ \Omega^{-1}$, Fig. 2b) and we calculate by FEM simulations the transmittance ($T$) for the optimal plasmonic grating configuration as a function of the thickness of a 1.45-refractive index coating layer. This last procedure is supposed to be quite accurate given the validation of the device simulation reported in Fig. 6. In Fig. S3 we report the transmittance as a function of $t$ as well as its derivative divided by $T$ in the case of the optimal structure described in the main text (period = 628 nm, groove width = 364 nm).

As can be noted the maximum sensitivity is achievable for a coating thickness of few nanometers and amounts to about $S_t = 1.9 \cdot 10^{-5} \ \Omega^{-1}/\text{nm}$. Moreover, the resolution of the sensor (i.e. the smallest change of a measurand which produces a detectable change in the sensor output) can be estimated. In our case it is given by

$$R_t = \frac{\delta t}{\delta \sigma} = \frac{\delta \sigma}{S_t} \quad (\text{S3})$$

where $\delta \sigma$ is the experimental error on the conductance measurement. The signal fluctuations are affected by the electronic noise and the laser stability. $\delta \sigma$ has been measured performing multiple consecutive angular scans and estimated to be $\sim 3 \cdot 10^{-7} \ \Omega^{-1}$. Finally, an estimate of the sensor theoretical resolution is $R_t = 1.6 \cdot 10^{-2} \ \text{nm}$.

The reported values of sensitivity and resolution are connected to the specific refractive index adopted for the layer. In order to provide more general figures of merit for the sensor performance evaluation, the sensitivity and resolution are usually reported in terms of Refractive Index Unit (RIU) instead of thickness of a specific kind of layer. More in detail, the detector response variation is evaluated by varying the index of refraction of the whole (bulk) dielectric space in contact to the metal, $n_{\text{eff}}$ (effective index). The latter is calculated by FEM simulations, obtaining the transmittance and its derivative as a function of $n_{\text{eff}}$ (Fig. S4). By these data the sensitivity can be obtained as:

$$S_{\text{eff}} = \frac{\partial \sigma}{\partial n_{\text{eff}}} = m_\sigma \cdot \frac{1}{T} \frac{\partial T}{\partial n_{\text{eff}}} \quad (\text{S4})$$

It is worth to note that the optimal structure is not obtained maximizing the sensitivity in this differential form but in a discrete formulation, where the relative transmittance variation is obtained by the difference of transmittance with and without a 5 nm-thick layer. This choice causes a minor variation of the optimal geometric parameters that it is lower than the dimensional inaccuracy in the fabrication of the designed nanostructures.
The maximum calculated relative transmittance variation, \( T \right\frac{\partial T}{\partial n_{\text{eff}}} \), for the present configuration is about 46000 %/RIU (Fig. S4). Considering equation (S4), defining the sensitivity of the device, we can finally estimate \( S_{\text{eff}} \approx 1.7 \cdot 10^{-2} \Omega^{-1}/\text{RIU} \). The relative sensor theoretical resolution in terms of RIU can thus be calculated by using

\[
R_{\text{eff}} = \frac{\delta n_{\text{eff}}}{\delta \sigma} \frac{\delta \sigma}{S_{\text{eff}}}
\]

obtaining \( R_{\text{eff}} \approx 1.8 \cdot 10^{-5} \text{ RIU} \).

**Synthesis of thiolated biotin: 5-(2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl)-N-(6-(3-(tritylthio)propanamido)hexyl)pentanamide**

A thiolated derivative of biotin was synthesized to functionalize the gold surface and test the device as an affinity biosensor (see the following section). 100 mg of biotinylamidohexanolamine (Biotin-(C\(_2\))\(_6\)-NH\(_2\) - 0.29 mmol) were dissolved in 5 ml anhydrous N-Methyl-2-pyrrolidone (NMP) and 101.8 mg S-trityl-20 mercaptopropionic acid ((trt)MPA – IRIS biotech; 1 eq.), 33.63 mg N-hydroxysuccinimide (NHS – ACROS; 1 eq.) and 66.3 mg diciclohexylcarbodiimide (DCCI – Sigma; 1.1 eq.) were added, the pH was immediately adjusted to ~8.5 with triethylamine (TEA - Sigma). The reaction was followed with ninhydrin observing the disappear of the amine-related purple spot; after 1h the precipitated diciclohexylurea (DCU) was removed by gooch filtration and the product precipitated in diethyl ether; the product was recovered with anhydrous methanol, and the presence of biotin assessed with Renz & Loew reactive (red-purple spot on TLC). 3 ml of methanolic solution, corresponding to 57 mg of product, were divided into aliquots, dried in vacuum and stored under inert gas at -20°C.

**Scheme S1** General scheme of thiolated biotin derivative.

**Biotin functionalization and avidin binding procedure**

We tested the device operation as an affinity biosensor with a well known biochemical interaction, the binding of avidin to biotin, featuring a high specificity and affinity constant\(^8\)–\(^10\). The samples were cleaned with multiple rinses in ethanol and pre-characterized with the bare gold surface. Then a 2 mM ethanolic solution of a thiolated biotin derivative was prepared from aliquots previously prepared (see precedent section); the trityl protecting group was removed dropping trifluoroacetic acid (15-20 µl/0.5 ml final solution) on the ppt; after 15 min the TFA was evaporated in vacuum for 10 min and ethanol was added to the
final volume; few drops (~50 μl) of the solution were deposited on the samples and kept in an ethanol-saturated atmosphere for 16 hours. Further rinses in ethanol were performed to wash away biotin molecules not stably bonded to the gold active area by the Au-S bond. The phototransistors response was characterized after this functionalization step too. Finally few tens micro-litres of 4 μg/ml avidin in DI water solution were applied on the surfaces for 15’ and the samples were rinsed in water to wash un-bound avidin molecules away.

Notes and references