Supplementary Information – Controlling Nickel Nanoparticle Size in an Organic/Metal-Organic Matrix Through the Use of Different Solvents

S1: A: Magnetization vs. applied field for sample 2 (solvent: THF/DCM). B: M vs. B/T where once the magnetization from the Langevin component has been subtracted the low temperature data can be scaled onto the 2 K curve. inset: Langevin function and a linear component fit to the 290 K data when plotted as M vs. B/T

S2: A: Magnetization vs. applied field for sample 4 (solvent: THF/DCB). B: M vs. B/T where once the magnetization from the Langevin component has been subtracted the low temperature data can be scaled onto the 2 K curve. inset: Langevin function and a linear component fit to the 290 K data when plotted as M vs. B/T
S3: A: Magnetization vs. applied field B: A scaled M vs. B/T plot for sample 5 (solvent: THF/PhCN). The fit to the data is a two-term Langevin function.

S4: High Resolution TEM image of Sample 1 showing ordered regions but with no distinct particles observed. Inset: Diffraction pattern of the imaged area.
S5: High-resolution TEM image of Sample 1 illustrating that crystalline regions exist but no detailed particle sizes can be calculated.