Supplementary Information

Facile synthesis of sandwiched Zn$_2$GeO$_4$/graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries

Feng Zou, Xianluo Hu,* Long Qie, Yan Jiang, Xiaoqin Xiong, Yun Qiao and Yunhui Huang*

State Key Laboratory of Materials Processing & Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

E-mail: huxl@mail.hust.edu.cn (X. L. Hu); huangyh@mail.hust.edu.cn (Y. H. Huang)
Fig. S1 SEM image for the precursor to Zn$_2$GeO$_4$/GO-2 after reaction for 1 h.

Fig. S2 EDX spectrum of the as-formed Zn$_2$GeO$_4$/GO-2 nanocomposite. The signal of Pt is generated from the surface coating of Pt by sputtering for SEM measurements.
Fig. S3 TG curves of Zn$_2$GeO$_4$/GO-1 and Zn$_2$GeO$_4$/GO-2 obtained in air atmosphere at a heating rate of 10 °C min$^{-1}$.

Fig. S4 Cyclic performance of the Zn$_2$GeO$_4$/GO nanocomposite with a higher GO content (16.1%).
Fig. S5 Digital photos: the fresh electrodes of (a) Zn$_2$GeO$_4$/GO-0 and (c) Zn$_2$GeO$_4$/GO-2; (b) the Zn$_2$GeO$_4$/GO-0 electrode after 10 discharge-charge cycles; and (d) the Zn$_2$GeO$_4$/GO-2 electrode after 100 discharge-charge cycles. The scale bars in the images are 1 mm.