Programmed assembly of polymer–DNA conjugate nanoparticles with optical readout and sequence-specific activation of biorecognition.

Johannes P. Magnusson, a Francisco Fernández-Trillo, b Giovanna Sicilia, a Sebastian G. Spain*, a and Cameron Alexander*, a

a School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
b School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Synthesis of PEGylated DNA strands .. 2
MALDI analysis .. 4
Buffers and Solutions .. 5
Dynamic light-scattering (DLS) .. 6
Transmission electron microscopy .. 6
Stability assay .. 6
Strand displacement assays .. 7
Synthesis of PEGylated DNA strands

Scheme 1 Synthesis of mPEG-NHS and PEGylated oligonucleotides.

Figure S1 1H NMR spectra of mPEG-NHS
Figure S2 HPLC analysis of oligonucleotides before and after PEGylation and subsequent purification. **A.** Oligonucleotide A1; **B.** oligonucleotide A3.
MALDI analysis

Figure S3 MALDI-TOF mass spectrometry of oligonucleotides before and after PEGylation. Spectrum of A3 prior to PEGylation is not shown as the unmodified oligonucleotide would not ionise successfully.

Oligo A1 m/z 7017, [M+H]+ requires 7038.

Mass expected for conjugation of PEG to A1:
\[M_{A1} + M_{\text{Linker}} + M_{Me} + n \times M_{\text{CH}_2\text{CH}_2\text{O}} = 7038 + 44 + 15 + (n \times 44) \]
\[= 7097 + n \times 44 \]

If \(n = 51 \), then [PEG-A1+H]+ requires 9341, found 9320.

\[M_{A3} = 7593 \]

[PEG-A3+H]+ = 7652 + n × 44

\(n = 50 \), requires 9852, found 9840
Buffers and Solutions

Table S2: Solutions and buffers used herein

<table>
<thead>
<tr>
<th>Solution</th>
<th>Components</th>
</tr>
</thead>
</table>
| Hybridization buffer | 10 mM tris·HCl
 50 mM NaCl
 1 mM EDTA
 Dissolved in DNase free water and adjusted to pH 7.5. |
| Denaturing loading buffer | 900 µL formamide
 22.2 µL 0.5 M EDTA (pH 8)
 26.5 µL 7.5 % Orange G
 51.3 µL water |
| Denaturing PAGE gel (15%) | 2.82 mL 40% acrylamide/bis-acrylamide 29/1
 3.6 g urea
 0.75 mL 10 × TBE
 0.85 mL water
 37.5 µL 10 wt% ammonium persulfate
 3.75 µL TEMED |
| Provides 7.5 mL of gel suitable for casting 1 0.75 mm thick minigel | |
| Native loading buffer | 100 µL glycerol
 100 µL 10 × TBE
 800 µL water
 For the ladder 20 µL of 7.5% Orange G was added with a equal reduction in the volume of water added |
| Native PAGE gel (20%) | 3.75 mL 40% acrylamide/bis-acrylamide 29/1
 0.75 mL 10 × TBE
 3 mL water |
| Provides 7.5 mL of gel suitable for casting 1 0.75 mm thick minigel | |
| Methylene blue staining solution | 200 mg methylene blue
 100 mL 10 × TBE
 900 mL water |
| Stains-All solution (0.1%) | 20 mg Stains-All
 20 mL formamide |
| Destaining buffer | 30 mL 20 mM tris buffer pH 8
 10 mL propan-2-ol |
| Stains-All staining solution | 5 mL 0.1% Stains-All solution
 20 mL destaining buffer |
Dynamic light-scattering (DLS)

Figure S4 A. Correlation curve for DLS of hybrid PEG-A1:B1. B. Dynamic light-scattering of oligo B1. Intensity (black line) and number (red line) distributions. C. Correlation curve for DLS of oligo B1.

Transmission electron microscopy

Figure S5. Transmission electron micrograph of oligo B1 stained with sodium phosphotungstate.

Stability assay

Figure S6 Stability assay analyzed by PAGE. Lanes 1–4: PEG-A1:B1 after 0, 24, 48 and 72 h incubation. Lanes 5–8: A2:C after 0, 24, 48 and 72 h incubation
Strand displacement assays

Figure S8 Fluorescence emission spectra of hybrid PEG-A3:B3 before (t1) and after (t2) dilution/displacement. The spectrum of B3 is provided for comparison. A. addition of buffer; B. addition of 1 equivalent of strand C; C. addition of 1 equivalent of strand D.