Electronic Supplementary Information

For

In-Situ Modulation of the Vertical Distribution in a Blend of P3HT and PC_{60}BM via the Addition of a Composition Gradient for Improving Photovoltaic Performance

Byung Joon Moon,‡ Gang-Young Lee,‡ Min Jeong Im, Seulki Song, and Taiho Park*

Pohang University of Science and Technology, San 31, Nam-gu, Pohang, Kyoungbuk, Korea
. Fax: 82-54-279-8298; Tel: 82-54-279-2394; E-mail: taihopark@postech.ac.kr

* Corresponding author: taihopark@postech.ac.kr
‡ These authors are equally contributed to this work.

Table of Contents

1. Image of F-ADD film (Fig. S1)
2. UV-vis spectra of PC_{60}BM with F-ADD in chloroform (Fig. S2)
3. Contact angle and surface energy (Fig. S3)
4. Secondary ion Mass Spectrometry (Fig. S4)
5. Device evaluations (Fig. S5, S6, S7, S8 and S9)
1. Image of F-ADD film

![Image of F-ADD film](image)

Fig. S1 An image of F-ADD film spun from chloroform (100 mg/mL) on a PEDOT:PSS-coated glass substrate.

2. UV-vis spectra of PC$_{60}$BM with F-ADD in chloroform

![UV-Vis spectra](image)

Fig. S2 UV-Vis. absorption spectra of PC$_{60}$BM with F-ADD in 4.0 x 10$^{-4}$ M (a) and 1.3 x 10$^{-5}$ M chloroform solution.
2. Contact angle and surface energy

Contact Angle (Water)

<table>
<thead>
<tr>
<th>Type</th>
<th>Droplet</th>
<th>Θ (°)</th>
<th>Type</th>
<th>Droplet</th>
<th>Θ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCBM only</td>
<td>87.1</td>
<td></td>
<td>3 wt%</td>
<td>97.9</td>
<td></td>
</tr>
<tr>
<td>0.25 wt%</td>
<td>92.1</td>
<td></td>
<td>5 wt%</td>
<td>100.6</td>
<td></td>
</tr>
<tr>
<td>0.5 wt%</td>
<td>93.8</td>
<td></td>
<td>10 wt%</td>
<td>103.3</td>
<td></td>
</tr>
<tr>
<td>1 wt%</td>
<td>95.9</td>
<td></td>
<td>P3HT only</td>
<td>101.2</td>
<td></td>
</tr>
</tbody>
</table>

Contact Angle (Glycerol)

<table>
<thead>
<tr>
<th>Type</th>
<th>Droplet</th>
<th>Θ (°)</th>
<th>Type</th>
<th>Droplet</th>
<th>Θ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCBM only</td>
<td>53.8</td>
<td></td>
<td>3 wt%</td>
<td>59.4</td>
<td></td>
</tr>
<tr>
<td>0.25 wt%</td>
<td>55.6</td>
<td></td>
<td>5 wt%</td>
<td>61.5</td>
<td></td>
</tr>
<tr>
<td>0.5 wt%</td>
<td>56.5</td>
<td></td>
<td>10 wt%</td>
<td>66.8</td>
<td></td>
</tr>
<tr>
<td>1 wt%</td>
<td>57.1</td>
<td></td>
<td>P3HT only</td>
<td>90.2</td>
<td></td>
</tr>
</tbody>
</table>

Fig. S3 Contact angles of PC$_{60}$BM containing various amounts of F-ADD on a PEDOT:PSS-coated substrate.
3. Secondary Ion Mass Spectrometry Result

![Graphs showing SIMS of P3HT:PC_{60}BM blend films with different F-ADD concentrations.](image)

Fig. S4 SIMs of P3HT:PC_{60}BM blend films with 0 (a), 0.25 (b), 0.5 (c), 1.0 (d), 3.0 (e), 5.0 (f) and 10 (g) % of F-ADD.

4. Devices evaluations

![Graphs showing deviation of photovoltaic parameters of 8 devices polymer solar cells.](image)

Fig. S5 Deviation of photovoltaic parameters of 8 devices polymer solar cells.
Fig. S6 Devices data of polymer solar cells with 0 (a), 0.25 (b), 0.5 (c), 1.0 (d), 3.0 (e), 5.0 (f) and 10 (g) % of F-ADD.
Fig. S7 IPCE curves of the polymer solar cells with 0 (a), 0.25 (b), 0.5 (c), 1.0 (d), 3.0 (e), 5.0 (f) and 10 (g) % of F-ADD
Fig. S8 Dark J-V characteristics of polymer solar cells with 0 (a), 0.25 (b), 0.5 (c), 1.0 (d), 3.0 (e), 5.0 (f) and 10 (g) % of F-ADD.
Fig. S9 Devices data of polymer solar cells 0 (a), 0.5 (b) wt % of F-ADD in various annealing conditions.