## **Electronic Supplementary Information**

## White light emission from heterojunction diodes based on surface-oxidized porous Si nanowire array and amorphous In-Ga-Zn-O capping

Kyeong-Ju Moon,<sup>a</sup> Tae II Lee, <sup>a</sup> Woong Lee<sup>b</sup> and Jae-Min Myoung<sup>\*a</sup>,

<sup>1</sup>Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seoul 120-749, Republic of Korea

<sup>2</sup>School of Materials Science and Engineering, Changwon National University, 9 Sarim-dong, Changwon, Gyeongnam 641-773, Republic of Korea



**Figure S1.** (a) SEM micrographs showing the morphology of the 'nanomatch' p-n heterojunction structures formed by depositing *a*-IGZO capping on the top end sides of the PSiNW array (scale bars indicate 5  $\mu$ m). The 'chinks' near the SiNW root areas are Ag nanoparticles that functioned as catalysts during the electroless etching process; (b) TEM contrast image showing the detailed shape of the individual 'nanomatch' structure.



**Figure S2.** *I*–*V* characteristics of the control diode prepared using PSiNWs without surface oxidation. While the turn on voltage is much lower than that of the device prepared using surface-oxidized PSiNWs, the resistances (reciprocal of the first derivative of the *I*–*V* curve) increase abruptly at certain voltages. In addition, the device showed failure at the applied voltage above 10 V.



**Figure S3.** EL microscope image obtained from a control LED prepared with pristine PSiNWs showing pale orange light emission indicating the the absence of the green and blue emissions.



**Figure S4.** Tendency of light emission and current appraised for 20 hr at a fixed voltage of 15V.



**Figure S5.**  $\ln(I)-V$  characteristics of the PSiNW/a-IGZO device using the PSiNWs with ((a)-(d)) and without surface passivation (e). The ideality factors are much higher than 2 implying the presence of defect states in Si NWs although heterostructure diodes based on wide band gap materials have generally high ideality factors.<sup>1–3</sup> The changing ideality factors with varying applied voltage suggests that these devices have more than one recombination path of electrons and holes.<sup>4</sup> The ideality factor of device without passivation was extremely increased in high voltage regime due to the deep level trap from surface defects.<sup>5</sup>

## References

- C. X. Wang, G. W. Yang, H. W. Liu, Y. H. Han, J. F. Luo, C. X. Gao, and G. T. Zou, *Appl. Phys. Lett.* 2004, 84, 2427–2429.
- 2. Y. R. Ryu, T. S. Lee, J. H. Leem, H. W. White, Appl. Phys. Lett. 2003, 83, 4032-4034.
- Ya. I. Alivov, Ü. Özgür, S. Doğan, D. Johnstone, V. Avrutin, N. Onojima, C. Liu, J. Xie,
  Q. Fan, H. Morkoç, *Appl. Phys. Lett.* 2005, 86, 241108.
- N. Koteeswara Reddy, Q. Ahsanulhaq, J. H. Kim, Y. B. Hahn, *Appl. Phys. Lett.* 2008, 92, 043127.
- 5. S. Y. Xie, S. F. Yoon, and S. Z. Wang, J. Appl. Phys. 2005, 97, 073702.