Electronic Supporting Information (ESI)

Electrospun \(\text{Na}_3\text{V}_2(\text{PO}_4)_3/\text{C} \) Nanofibers as Stable Cathode Materials for Sodium-Ion Batteries

By Jun Liu, Kun Tang, Kepeng Song, Peter A. van Aken, Yan Yu* and Joachim Maier

[*] Prof. Dr. Yan Yu
CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China.
E-mail: yanyumse@ustc.edu.cn

Dr. Jun Liu[+], Dr. Kun Tang[+], Prof. Dr. Yan Yu and Prof. Dr. Joachim Maier
Max Planck Institute for Solid State Research, Heisenbergstr. 1, Stuttgart, 70569, Germany

Mr. Kepeng Song, Prof. Dr. P. A. van Aken
Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany

[+] These authors contributed equally to this work.
Experimental methods

Na$_3$V$_2$(PO$_4$)$_3$/C nanofibers fabrication

NaH$_2$PO$_4$ (3.75 mmol), NH$_4$VO$_3$ (2.5 mmol), citric acid (6.25 mmol) and 0.6 g polyethylene oxide (PEO, Mw = 600,000) were dissolved into 30 mL distiller water. After vigorous stirring for 12 h, the homogenous precursor solution was poured into a syringe connected to a plastic needle, while a copper wire attached to a high-voltage generator was placed in the solution. A direct current electric field of 20 kV was applied between the needle and the Al foil target used for collection. The as-collected electrospun fibers were calcined at 500 °C for 2 h and 800 °C for 10 h under Ar atmosphere to obtain Na$_3$V$_2$(PO$_4$)$_3$/C hierarchical nanofibers.

Materials characterization

The collected products were characterized by an X-ray diffractometry (XRD) on a Rigaku-DMax 2400 diffractometer equipped with the graphite monochromatized Cu Kα radiation flux at a scanning rate of 0.02°s$^{-1}$. Scanning electron microscopy (SEM) analysis was carried using a Zeiss Gemini DSM 982 scanning electron microscope. The thermogravimetric analysis (TGA) was performed from room temperature to 800 °C at a ramp rate of 20 °C/min with an air flow rate of 20 mL/min using Q50 TGA. The structure of these Na$_3$V$_2$(PO$_4$)$_3$/C hierarchical nanofibers was investigated by means of transmission electron microscopy (TEM, JEOL 4000FX).

Electrochemical test
The electrochemical performances of the as-prepared products were measured by using two-electrode Swagelok-type cells. For the preparation of the working electrode, a mixture of Na$_3$V$_2$(PO$_4$)$_3$/C hierarchical nanofibers, carbon black, and polyvinylidene fluoride (PVDF) in the weight ratio of 85:5:10 was ground in a mortar with N-methyl-2-pyrrolidone (NMP) as solvent to make slurry. For assembling Na-ion batteries, a Na foil was utilized as counter electrode and glass fiber (GF/D) from Whatman was used as a separator. The electrolyte was 1 M NaClO$_4$ in propylene carbonate (PC). The charge/discharge curves and cycling capacity were evaluated by an Arbin MSTAT battery test system in the cut-off voltages of 2.5 and 3.8 V. Cyclic voltammetry (CV) was performed using a VoltaLab 80 electrochemical workstation.