Supporting information (SI)

Rapid low-cost synthesis of Spherical Sn@C nanocomposites as High rate and Long life anodes for lithium-ion batteries

Ning Zhang, Qing Zhao, Xiaopeng Han, Jingang Yang, and Jun Chen

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China, Fax: 86-22-23509571; Tel: 86-22-23506808. E-mail: chenabc@nankai.edu.cn

Figure S1. Schematic of the aerosol spray pyrolysis platform.
Figure S2. SEM images of Sn@C samples obtained from different reaction parameters including: (a-c) different reaction temperature at the same gauge pressure (0.2 MPa) and precursor concentration (0.5 mol L\(^{-1}\) SnCl\(_2\)), (d-f) different gauge pressure at the same precursor concentration (0.5 mol L\(^{-1}\) SnCl\(_2\)) and reaction temperature (800 °C), (g-i) different precursor concentration at the same reaction temperature (800 °C) and gauge pressure (0.2 MPa).

Reaction temperature affects the evaporation rate of solvent and the dispersion of Sn@C particles, but a higher temperature will induce Sn@C particles agglomeration, due to a faster solvent evaporation rate leading to a lot aerosol particles aggregating, as shown in Fig. S2 (a-c). The higher carrying gas pressure will bring a better dispersion of Sn@C particles (Fig. S2 (d-f)). Fig. S2 (g-i) shows samples obtained at different precursor concentration, which could control the particle size. At a lower concentration of SnCl\(_2\), the size of Sn@C particles and embedded Sn nanograin is smaller.
Figure S3. Thermogravimetric (TGA) curves of Sn8@C and Sn40@C in air.

Figure S4. Cyclic voltammograms of the initial 3 cycles of Sn40@C scanned in the range of 0 - 3 V at a rate of 0.1 mV s⁻¹.
Figure S5. Charge/discharge profiles of Sn40@C in the initial three cycles.

Fig. S5 shows the charge-discharge profiles of Sn40@C composite at 200 mA g\(^{-1}\) between 0.02 V and 3.0 V. The initial discharge and charge capacities are 1142.7 mA h g\(^{-1}\) and 790.8 mA h g\(^{-1}\).

Figure S6. (a) Charge/discharge profiles at the 1st, 2nd and 3rd cycles of pyrolyzing carbon at 200 mA g\(^{-1}\) between 0.02 V and 3.0 V, (b) Cycling performance of the pyrolyzing carbon. The pyrolyzing carbon without Sn was synthesized as following steps: 7.7 g resorcinol and 10 ml formaldehyde were prepolymerized in advance to form a clear solution at room temperature. After 60 min stirring, the solution was carbonized with a heating rate of 5 °C min\(^{-1}\) in flowing argon at 800 °C for 30 min.
Figure S7. Rate capability of the pyrolyzing carbon at different current densities between 0.02 V and 3.0 V.

Figure S8. Cycling performance of Sn8@C nanocomposite from the first cycle to the 100th cycle between 0.02 and 1.5 V with a current density of 1000 mA g\(^{-1}\).
Figure S9. Cycling performance of Sn8@C from the first cycle to the 400th cycle between 0.02 and 3.0 V with a current density of 800 mA g-1.