Supporting Information

One-Step Synthesis of Water-dispersible Ultra-Small Fe₃O₄ Nanoparticles as Contrast Agents for T_1 and T_2 Magnetic Resonance Imaging

Guannan Wang,⁹ Xuanjun Zhang,⁹ Yaxu Liu,⁸ Andreas Skallberg,⁹ Zhangjun Hu,⁹ Xifan Mei *⁸ and Kajsa Uvdal*⁹

⁹ Department of Chemistry, College of Pharmacy, Liaoning Medical University, Jinzhou, 121001, China

⁸ The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Liaoning Medical University, Jinzhou, 121001, China. E-mail: meixf1971@163.com; Fax: +86-416-4673162; Tel: +86-416-4673162

⁹ Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry, and Biology, Linköping University, Linköping 58183, Sweden. E-mail: kajsa@ifm.liu.se; Fax: +46 13 28 8969; Tel: +46 13281208
Figure S1. The size of Fe$_3$O$_4$ nanoparticles can be impacted by changing the amount of PAA. The TEM images as-synthesized Fe$_3$O$_4$ nanoparticles by changing the amount of PAA: a) 1mmol, b) 10mmol. The histograms below a and b are their DLS spectrum. Scale bar represents 5nm.
Figure S2. The FTIR spectra of 2.2 nm sized Fe₃O₄ nanoparticles, the insert is the schematic showing the carboxylate group bound to surface of nanoparticles in a bridging coordination.
Figure S3. TGA curves of 2.2 nm sized Fe₃O₄ nanoparticles.