Supplementary Information for

Enhancement of Seawater Corrosion Resistance in Copper Using Acetone-Derived Graphene Coating

Jae-Hoon Huh, a,b Seung Hyun Kim, c Jae Hwan Chu, a Sung Youb Kim, b,c Ji Hyun Kim, *, a,c and Soon-Yong Kwon *, a,b,c

a School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea

b Opto-Electronics Convergence Group & Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea

c School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea

*To whom correspondence should be addressed. Email: kimjh@unist.ac.kr, sykwon@unist.ac.kr
Figure S1: Three-electrode cell configuration for electrochemical corrosion test of as-received, mechanically-polished, and graphene-coated Cu.
Figure S2: (a) Raman spectra of graphene films grown on front and back sides of Cu foil after growth at 1,000 °C for 3 min. (b) Impedance behavior of front and back sides of graphene-coated Cu in 3.5% NaCl seawater condition.
Figure S3: Raman spectra of graphene films transferred onto SiO$_2$(300 nm)/Si substrates after growth at (a) 800 °C, (b) 900 °C, and (c) 1,000 °C for 3 min. Note that graphene grew on both the front and back side of the Cu foil.
Figure S4: SEM image of corrosion diffusion traces through grain boundary of monolayer graphene-coated Cu after EIS test in 3.0 % NaCl solution.