Supporting Information

Synthesis and Optimizable Electrochemical Performance of Reduced Graphene Oxide Wrapped Mesoporous TiO$_2$ Micospheres

Xiao Yana, Yanjuan Lib, Fei Dua, Kai Zhua, Yongquan Zhanga, Anyu Sua, Gang Chena,c, and Yingjin Weia,*

aKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China.

bCollege of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, Changchun 130012, PR China

cState Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, P. R. China

Corresponding author: yjwei@jlu.edu.cn (Y. J. Wei)

Tel & Fax: 86-431-85155126
Fig. S1 TGA curves of the TiO\textsubscript{2}/RGO samples with different RGO contents, (a) 5.3 wt\%, (b) 8.9 wt\%, and (c) 11.2 wt\%.

Fig. S2 C 1s XPS spectra of the graphene oxide.
Fig. S3 AFM image of the graphene oxide.

Fig. S4 SEM image of the lab-prepared ordinary TiO$_2$ nanoparticles.
Fig. S5 SEM images of the TiO$_2$ and TiO$_2$/RGO electrodes after 80 charge-discharge cycles.

Fig. S6 Rate dependent cycling performance of RGO in the voltage range of 1.0-3.0 V.
Fig. S7 Rate dependent cycling performance of TiO$_2$/RGO with different RGO contents.