Electronic supplementary information (ESI)

A mild route to mesoporous Mo$_2$C/C hybrid nanospheres for high performance lithium-ion batteries

Qing Gaoa, Xinyu Zhaoa, Ying Xiaoa, Di Zhaoa, Minhua Cao*,a,b

Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Department of Chemistry, Beijing Institute of Technology, Beijing 100081, P. R. China.
Fig. S1 FE-SEM images of the bulk Mo$_2$C.

![FE-SEM images of the bulk Mo$_2$C](image)

Fig. S2 (a) XRD patterns and (b) XPS spectrum of the Mo$_2$C/C electrode after the fourth discharge.

![XRD patterns and XPS spectrum of the Mo$_2$C/C electrode](image)