SUPPLEMENTARY MATERIALS

Glycan-functionalized diamond nanoparticles: exceptional inhibition of *E. coli* type 1 fimbriae-mediated adhesion

Alexandre Barras, Fernando Ariel Martin, Omprakash Bande, Jean-Sébastien Baumann, Jean-Marc Ghigo, Rabah Boukherroub, Christophe Beloin, Aloysius Siriwardena, Sabine Szunerits

a Institut de Recherche Interdisciplinaire (IRI, USR CNRS 3078), Université Lille 1, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France.

b Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.

c Laboratoire des Glucides (FRE 3517 CNRS), Université de Picardie Jules Vernes, 33 rue saint Leu, 80039 Amiens, France.

equivalent contribution

1 present address: INSERM U1001, Université Paris Descartes, Faculté de Médecine Necker, 156 rue de Vaugirard 75015 Paris, France

2 present address: Rega Institute for Medical Research, Laboratory for Medicinal Chemistry, Minderbroedersstraat 10, B-3000 Leuven, Belgium

* to whom correspondence should be sent: cbeloin@pasteur.fr; aloysius.siriwardena@u-picardie.fr; Sabine.Szunerits@iri.univ-lille1.fr
Figure S1. Representative optical microscopy images of yeast agglutination assay in the absence or presence of the inhibitors. Bacteria expressing type 1 fimbriae were grown under static conditions, washed and incubated with (a) PBS; (b) methyl-α-D-mannopyranoside, αmmp (7 mM); (c) ND-Mannose (19.4 µg.mL⁻¹, 6.8 µM); (d) ND-No sugar (500 µg.mL⁻¹). Cells were incubated for 5 min and yeast (1 OD600) were added and samples observed under the microscope. The experiments were performed in triplicate and at least on three independent occasions experiments.