Solution Equilibrium behind the Room-Temperature Synthesis of Nanocrystalline Titanium Dioxide

Gulaim A. Seisenbaeva,^{♯, †} Geoffrey Daniel,[†] Jean-Marie Nedelec,^{±,§} Vadim G. Kessler,[∗]^{∦, †}

^k Department of Chemistry, Biocenter, Swedish University of Agricultural Sciences (SLU), Box 7015, SE-75007, Uppsala, Sweden, [‡] CaptiGel AB, Uppsala Science Park, 75183 Uppsala, Sweden, [‡] Department of Forest Products/Wood Science, SLU, Box 7008, 75007 Uppsala, Sweden, [#] Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63177 Clermont-Ferrand, France, [§] CNRS, UMR 6296, ICCF, F-63171 AUBIERE, France

Supplementary materials

Table TS1. Crystal data and structure refinement for (NH₄)₂[Ti(C₃H₄O₃)₃](H₂O)₃.

Identification code	tilac1_0m		
Empirical formula	$C_9H_{26}N_2O_{12}Ti$		
Formula weight	402.22		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Hexagonal		
Space group	P3		
Unit cell dimensions	a = 15.3040(15) Å	$\alpha = 90^{\circ}$.	
	b = 15.3040(15) Å	β= 90°.	
	c = 6.6658(13) Å	$\gamma = 120^{\circ}.$	
Volume	1352.0(3) Å ³		
Z	3		
Density (calculated)	1.482 Mg/m^3		
Absorption coefficient	0.535 mm ⁻¹		
F(000)	636		
Crystal size	0.31 x 0.28 x 0.08 mm ³		
Theta range for data collection	2.66 to 23.82°.		
Index ranges	-17<=h<=17, -17<=k<=17, -7<	<=l<=7	
Reflections collected	9275		
Independent reflections	2772 [R(int) = 0.0449]		
Completeness to theta = 23.82°	99.7 %		
Absorption correction	Empirical		
Max. and min. transmission	0.9585 and 0.8518		

- Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole
- Full-matrix least-squares on F² 2772 / 36 / 262 0.968 R1 = 0.0219, wR2 = 0.0509 R1 = 0.0237, wR2 = 0.0516 -0.03(10) 0.120 and -0.127 e.Å⁻³

	Х	У	Z	U(eq)
 Ti(1)	3333	6667	8779(5)	26(1)
Ti(2)	0	10000	-1171(5)	26(1)
Ti(3)	6667	3333	6998(5)	24(1)
O(2)	-1002(7)	8939(7)	805(14)	32(2)
O(1)	4235(7)	7756(7)	6798(15)	38(2)
O(3)	6385(7)	2152(6)	8348(13)	33(2)
O(8)	-2027(8)	7286(7)	1248(15)	42(2)
C(1)	5464(10)	1341(11)	5400(20)	33(3)
O(7)	5006(9)	651(8)	4234(16)	60(3)
C(8)	5411(10)	8162(10)	9410(20)	32(3)
C(2)	5774(10)	1188(9)	7490(20)	32(3)
O(9)	5772(9)	9043(9)	6300(17)	59(3)
C(7)	5153(10)	8357(10)	7350(20)	33(3)
C(9)	6328(11)	8039(14)	9390(30)	53(4)
C(4)	-1459(9)	8021(10)	210(20)	28(3)
O(6)	5732(7)	2266(7)	5006(13)	35(2)
O(5)	-418(7)	8810(6)	-2594(13)	32(2)
O(4)	4552(6)	7288(7)	10186(13)	34(2)
O(10)	444(10)	8594(9)	-6084(18)	49(3)
O(11)	-3125(10)	7507(10)	4484(19)	57(3)
O(12)	6735(10)	10125(9)	2872(18)	51(3)
N(1)	3687(10)	8568(10)	3535(18)	44(3)
N(2)	4623(10)	2496(10)	1826(19)	36(3)
C(3)	4865(12)	525(12)	8770(20)	51(4)
C(6)	-1132(15)	7014(11)	-2380(30)	60(5)
C(5)	-1269(10)	7902(10)	-1980(20)	34(3)

Table TS2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for (NH₄)₂[Ti(C₃H₄O₃)₃](H₂O)₃. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Ti(1)-O(4)#1	1.868(9)
Ti(1)-O(4)	1.868(9)
Ti(1)-O(4)#2	1.868(9)
Ti(1)-O(1)#1	2.032(10)
Ti(1)-O(1)	2.032(10)
Ti(1)-O(1)#2	2.032(10)
Ti(2)-O(5)	1.860(9)
Ti(2)-O(5)#3	1.860(9)
Ti(2)-O(5)#4	1.860(9)
Ti(2)-O(2)#3	2.057(9)
Ti(2)-O(2)#4	2.057(9)
Ti(2)-O(2)	2.057(9)
Ti(3)-O(3)	1.866(8)
Ti(3)-O(3)#5	1.866(8)
Ti(3)-O(3)#6	1.866(8)
Ti(3)-O(6)#5	2.035(9)
Ti(3)-O(6)	2.035(9)
Ti(3)-O(6)#6	2.035(9)
O(2)-C(4)	1.280(16)
O(1)-C(7)	1.289(17)
O(3)-C(2)	1.414(15)
O(8)-C(4)	1.234(16)
C(1)-O(7)	1.215(17)
C(1)-O(6)	1.289(17)
C(1)-C(2)	1.523(19)
C(8)-O(4)	1.424(16)
C(8)-C(7)	1.50(2)
C(8)-C(9)	1.51(2)
C(8)-H(8A)	0.9800
C(2)-C(3)	1.51(2)
C(2)-H(2A)	0.9800
O(9)-C(7)	1.223(16)
C(9)-H(9A)	0.9600
C(9)-H(9B)	0.9600
C(9)-H(9C)	0.9600
C(4)-C(5)	1.514(19)

Table TS3.	Bond lengths [Å] and angles [°] for $(NH_4)_2[Ti(C_3H_4O_3)_3](H_2O)_3$.	
------------	---	--

O(5)-C(5)	1.410(16)
O(10)-H(10A)	0.79(13)
O(10)-H(10B)	0.84(10)
O(11)-H(11A)	0.86(11)
O(11)-H(11B)	0.87(11)
O(12)-H(12A)	0.88(11)
O(12)-H(12B)	0.86(11)
N(1)-H(1A)	1.1538
N(1)-H(1B)	0.8053
N(1)-H(1C)	0.9461
N(1)-H(1D)	1.1613
N(2)-H(2AA)	0.95(9)
N(2)-H(2BA)	0.96(10)
N(2)-H(2CA)	0.96(10)
N(2)-H(2DA)	0.97(10)
C(3)-H(3A)	0.9600
C(3)-H(3B)	0.9600
C(3)-H(3C)	0.9600
C(6)-C(5)	1.50(2)
C(6)-H(6A)	0.9600
C(6)-H(6B)	0.9600
C(6)-H(6C)	0.9600
C(5)-H(5A)	0.9800
O(4)#1-Ti(1)-O(4)	97.0(4)
O(4)#1-Ti(1)-O(4)#2	97.0(4)
O(4)-Ti(1)-O(4)#2	97.0(4)
O(4)#1-Ti(1)-O(1)#1	79.2(4)
O(4)-Ti(1)-O(1)#1	159.8(4)
O(4)#2-Ti(1)-O(1)#1	103.2(4)
O(4)#1-Ti(1)-O(1)	103.2(4)
O(4)-Ti(1)-O(1)	79.2(4)
O(4)#2-Ti(1)-O(1)	159.8(4)
O(1)#1-Ti(1)-O(1)	82.3(4)
O(4)#1-Ti(1)-O(1)#2	159.8(4)
O(4)-Ti(1)-O(1)#2	103.2(4)
O(4)#2-Ti(1)-O(1)#2	79.2(4)
O(1)#1-Ti(1)-O(1)#2	82.3(4)

O(1)-Ti(1)-O(1)#2	82.3(4)
O(5)-Ti(2)-O(5)#3	96.3(4)
O(5)-Ti(2)-O(5)#4	96.3(4)
O(5)#3-Ti(2)-O(5)#4	96.3(4)
O(5)-Ti(2)-O(2)#3	159.1(4)
O(5)#3-Ti(2)-O(2)#3	78.3(3)
O(5)#4-Ti(2)-O(2)#3	104.3(4)
O(5)-Ti(2)-O(2)#4	104.3(4)
O(5)#3-Ti(2)-O(2)#4	159.1(4)
O(5)#4-Ti(2)-O(2)#4	78.3(4)
O(2)#3-Ti(2)-O(2)#4	83.4(4)
O(5)-Ti(2)-O(2)	78.3(3)
O(5)#3-Ti(2)-O(2)	104.3(4)
O(5)#4-Ti(2)-O(2)	159.1(4)
O(2)#3-Ti(2)-O(2)	83.4(4)
O(2)#4-Ti(2)-O(2)	83.4(4)
O(3)-Ti(3)-O(3)#5	98.7(4)
O(3)-Ti(3)-O(3)#6	98.7(4)
O(3)#5-Ti(3)-O(3)#6	98.7(4)
O(3)-Ti(3)-O(6)#5	101.3(4)
O(3)#5-Ti(3)-O(6)#5	78.9(4)
O(3)#6-Ti(3)-O(6)#5	159.9(4)
O(3)-Ti(3)-O(6)	78.9(4)
O(3)#5-Ti(3)-O(6)	159.9(4)
O(3)#6-Ti(3)-O(6)	101.3(4)
O(6)#5-Ti(3)-O(6)	82.0(4)
O(3)-Ti(3)-O(6)#6	159.9(4)
O(3)#5-Ti(3)-O(6)#6	101.3(4)
O(3)#6-Ti(3)-O(6)#6	78.9(4)
O(6)#5-Ti(3)-O(6)#6	82.0(4)
O(6)-Ti(3)-O(6)#6	82.0(4)
C(4)-O(2)-Ti(2)	116.8(8)
C(7)-O(1)-Ti(1)	116.8(9)
C(2)-O(3)-Ti(3)	121.8(8)
O(7)-C(1)-O(6)	123.5(13)
O(7)-C(1)-C(2)	122.7(13)
O(6)-C(1)-C(2)	113.8(11)
O(4)-C(8)-C(7)	107.9(10)

O(4)-C(8)-C(9)	111.5(11)
C(7)-C(8)-C(9)	111.8(12)
O(4)-C(8)-H(8A)	108.5
C(7)-C(8)-H(8A)	108.5
C(9)-C(8)-H(8A)	108.5
O(3)-C(2)-C(3)	112.2(11)
O(3)-C(2)-C(1)	107.7(10)
C(3)-C(2)-C(1)	111.4(12)
O(3)-C(2)-H(2A)	108.5
C(3)-C(2)-H(2A)	108.5
C(1)-C(2)-H(2A)	108.5
O(9)-C(7)-O(1)	123.3(13)
O(9)-C(7)-C(8)	121.8(13)
O(1)-C(7)-C(8)	114.9(11)
C(8)-C(9)-H(9A)	109.5
C(8)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(8)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
O(8)-C(4)-O(2)	125.1(12)
O(8)-C(4)-C(5)	121.4(12)
O(2)-C(4)-C(5)	113.5(11)
C(1)-O(6)-Ti(3)	117.2(8)
C(5)-O(5)-Ti(2)	120.8(8)
C(8)-O(4)-Ti(1)	121.0(8)
H(10A)-O(10)-H(10B)	106(10)
H(11A)-O(11)-H(11B)	105(10)
H(12A)-O(12)-H(12B)	104(10)
H(1A)-N(1)-H(1B)	107.1
H(1A)-N(1)-H(1C)	104.3
H(1B)-N(1)-H(1C)	113.4
H(1A)-N(1)-H(1D)	113.1
H(1B)-N(1)-H(1D)	116.5
H(1C)-N(1)-H(1D)	101.8
H(2AA)-N(2)-H(2BA)	104(10)
H(2AA)-N(2)-H(2CA)	117(10)
H(2BA)-N(2)-H(2CA)	110(10)

H(2AA)-N(2)-H(2DA)	107(10)
H(2BA)-N(2)-H(2DA)	102(10)
H(2CA)-N(2)-H(2DA)	115(10)
C(2)-C(3)-H(3A)	109.5
C(2)-C(3)-H(3B)	109.5
H(3A)-C(3)-H(3B)	109.5
C(2)-C(3)-H(3C)	109.5
H(3A)-C(3)-H(3C)	109.5
H(3B)-C(3)-H(3C)	109.5
C(5)-C(6)-H(6A)	109.5
C(5)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
C(5)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
O(5)-C(5)-C(6)	111.2(11)
O(5)-C(5)-C(4)	107.5(11)
C(6)-C(5)-C(4)	113.8(12)
O(5)-C(5)-H(5A)	108.1
C(6)-C(5)-H(5A)	108.1
C(4)-C(5)-H(5A)	108.1

Symmetry transformations used to generate equivalent atoms:

#1 -y+1,x-y+1,z #2 -x+y,-x+1,z #3 -x+y-1,-x+1,z #4 -y+1,x-y+2,z #5 -y+1,x-y,z #6 -x+y+1,-x+1,z

Table TS4.	Anisotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for $(\text{NH}_4)_2[\text{Ti}(\text{C}_3\text{H}_4\text{O}_3)_3](\text{H}_2\text{O})_3$.	The anisotropic
displacement	factor exponent takes the form: $-2\pi^2$ [h ² a ^{*2} U ¹¹ + + 2 h k a [*] b [*] U ¹²]	

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
 Ti(1)	27(1)	27(1)	23(2)	0	0	14(1)
Ti(2)	26(1)	26(1)	24(2)	0	0	13(1)
Ti(3)	25(1)	25(1)	22(2)	0	0	13(1)
O(2)	34(5)	29(5)	30(5)	0(4)	6(4)	14(4)
O (1)	37(6)	38(6)	31(5)	11(5)	-2(4)	12(5)
O(3)	41(6)	29(5)	28(5)	0(4)	-8(4)	17(4)
O(8)	44(6)	32(6)	45(6)	7(5)	15(5)	16(5)
C(1)	27(7)	30(8)	36(8)	-2(6)	-4(6)	10(6)
O(7)	73(8)	39(6)	51(7)	-13(6)	-22(6)	15(6)
C(8)	26(7)	29(7)	34(8)	1(6)	-2(6)	9(6)
C(2)	34(8)	23(7)	39(8)	-1(6)	-3(6)	14(6)
O(9)	48(7)	50(7)	62(7)	28(6)	9(6)	11(6)
C(7)	33(8)	26(7)	41(8)	5(6)	3(7)	14(7)
C(9)	32(9)	63(11)	62(11)	19(9)	2(7)	23(8)
C(4)	24(7)	28(8)	35(8)	1(6)	2(6)	14(6)
O(6)	37(5)	31(5)	31(5)	-1(4)	-12(4)	12(4)
O(5)	35(5)	28(5)	31(5)	0(4)	7(4)	14(4)
O(4)	29(5)	39(5)	29(5)	7(4)	-2(4)	13(4)
O(10)	67(8)	51(7)	38(7)	13(6)	14(6)	35(6)
O(11)	57(8)	63(9)	48(7)	-4(6)	1(6)	28(7)
O(12)	59(8)	52(7)	45(7)	9(6)	4(6)	29(6)
N(1)	60(8)	39(7)	38(7)	-2(6)	-13(6)	28(7)
N(2)	33(7)	43(8)	29(7)	4(6)	-1(6)	17(6)
C(3)	53(10)	40(9)	48(9)	3(7)	8(8)	14(8)
C(6)	78(12)	32(9)	62(11)	2(8)	36(10)	21(9)
C(5)	32(8)	30(7)	34(7)	-1(6)	1(6)	11(6)

Table TS5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³)

for $(NH_4)_2[Ti(C_3H_4O_3)_3](H_2O)_3$.

	Х	у	Z	U(eq)
H(8A)	5552	8738	10270	39
H(2A)	6179	859	7345	39
H(9A)	6475	7923	10733	79
H(9B)	6894	8640	8868	79
H(9C)	6200	7475	8560	79
H(1A)	3410(20)	8160(30)	2010(100)	90(70)
H(1B)	3722(11)	8180(30)	4290(50)	70(60)
H(1C)	3190(30)	8736(14)	3920(30)	80(70)
H(1D)	4400(50)	9360(50)	3400(20)	100(70)
H(3A)	5084	440	10064	76
H(3B)	4476	-121	8134	76
H(3C)	4457	836	8912	76
H(6A)	-1023	6979	-3787	90
H(6B)	-1725	6406	-1965	90
H(6C)	-559	7089	-1641	90
H(5A)	-1852	7813	-2754	41
H(2AA)	4990(100)	2830(100)	650(180)	40(40)
H(2BA)	4290(120)	2860(120)	2200(300)	70(60)
H(11A)	-2800(160)	8150(90)	4600(300)	90(80)
H(2CA)	5010(120)	2470(140)	2900(200)	70(60)
H(2DA)	4070(110)	1850(90)	1400(300)	70(60)
H(10A)	500(150)	8970(130)	-7000(300)	80(70)
H(12A)	7240(110)	10020(140)	3100(300)	70(60)
H(10B)	190(130)	8740(130)	-5100(200)	60(60)
H(11B)	-2820(140)	7370(160)	3500(200)	80(70)
H(12B)	6330(140)	9800(140)	3800(200)	70(70)

Table TS6. Hydrogen bonds with H.A < r(A) + 2.000 Angstroms and <DHA > 110 deg.

D-H	d(D-H)	d(HA)	<dha< th=""><th>d(DA</th><th>) A</th></dha<>	d(DA) A
N1-H1A	1.154	1.745	162.39	2.866	O4 [-y+1, x-y+1, z-1]
N1-H1B	0.805	2.081	155.10	2.832	01
N1-H1C	0.946	1.806	165.86	2.733	O11 [-y+1, x-y+2, z]
N1-H1D	1.161	1.802	144.75	2.831	O7 [x, y+1, z]
N2-H2AA	0.949	9 1.947	175.94	2.895	O3 [-x+y+1, -x+1, z-1]
N2-H2BA	0.960) 1.823	166.64	2.767	O12 [-x+y, -x+1, z]
O11-H11A	0.856	5 1.953	158.75	2.769	O10 [-x+y-1, -x+1, z+1]
N2-H2CA	0.958	3 1.892	173.40	2.846	06
N2-H2DA	0.966	5 1.946	160.44	2.874	O8 [-y+1, x-y+1, z]
O10-H10A	0.785	5 2.081	164.80	2.846	O2 [-y+1, x-y+2, z-1]
O12-H12A	0.877	7 1.935	166.68	2.796	O10 [-x+y, -x+1, z+1]
O10-H10E	B 0.840) 1.949	167.53	2.774	05
O11-H11E	8 0.873	8 1.991	171.08	2.856	O8
O12-H12E	3 0.860) 1.944	161.61	2.774	09

Figure FS2 High resolution TEM image of a dried methanol sample – example 1

Figure FS3 High resolution TEM image of a dried methanol sample – example 2

5h

Figure FS4 Development of gelation in TiBALDH solutions with different agents

24h

Figure FS5 Development of precipitation in TiBALDH solutions in the presence of Arginine

Sample	Size (nm)	width (nm)	size2	width2	size3	width3	Zeta potential (mV)	рН
H ₂ O 50%	3,8	1,075					-8,2	6.8
MeOH	5,8	1,35					-4,51	neutral
1M NH ₄ Cl	3,94	1,01					-0,472	4.6
1 M AlCl ₃	4.0	1,06					-5,46	2.5
1M NaCl	6,1	1,53					-0,86	7.0
0.01 M KOH	1468	477	128,5	22			-37,5	12.0
5%								
Ethanolamine	4168	1000	647,4	212	142,1	40	-30	11.7

Table TS7 Average size and zeta-potential of colloids obtained from TiBALDH by dilution in different media

Relatively low values of zeta-potential in these cases might be caused by charge compensation in the inner sphere of the nanoparticles. Their solubility is then due to the hydrogen bonding to the solvent.

pH in 25% NH₃ solution was 12.3, in 5% Arginine 11.2

Figure FS6 Size distributions for colloids presented in Fig FS FS4

Figure FS7 Nanosight data on the size distribution in the colloid solution produced by addition of ethanol

SAMPLE REPORT

Particle Size / Concentration

Particle Size / Relative Intensity 3D plot

Bin Centre (nm)	Concentration E6 particles / ml	Percentile Undersize
10	0.000	0.00%
30	0.000	0.00%
50	0.000	0.00%
70	0.000	0.00%
90	0.767	0.22%
110	6.971	6.91%
130	6.998	23.34%
150	6.172	34.23%
170	6.828	48.08%
190	3.912	57.89%
210	3.333	64.39%
230	2.906	70.51%
250	2.286	75.40%
270	1.814	79.26%
290	1.575	82.45%
310	1.311	85.25%
330	0.901	87.34%
350	0.634	88.73%
370	0.624	89.88%
390	0.800	91.24%
410	0.924	92.96%
430	0.803	94.67%
450	0.527	95.93%
470	0.290	96.67%
490	0.162	97.07%
510	0.101	97.30%

Bin Centre (nm)	Concentration E6 particles / ml	Percentile Undersize	
530	0.063	97.46%	
550	0.035	97.55%	
570	0.022	97.60%	
590	0.027	97.64%	
610	0.048	97.71%	
630	0.081	97.84%	
650	0.116	98.03%	
670	0.145	98.28%	
690	0.162	98.58%	
710	0.162	98.90%	
730	0.148	99.20%	
750	0.122	99.46%	
770	0.091	99.66%	
790	0.062	99.80%	
810	0.038	99.90%	
830	0.021	99.95%	
850	0.011	99.98%	
870	0.005	99.99%	
890	0.002	100.00%	
910	0.001	100.00%	
930	0.000	100.00%	
950	0.000	100.00%	
970	0.000	100.00%	
990	0.000	100.00%	
1000-2000	0.000	100.00%	

Results
 <u>Results</u>

 Mean: 213 nm

 Mode: 117 nm

 SD: 118 nm

 D10: 113 nm

 D50: 172 nm

 User Lines: 0, 0 nm

 Concentration: 0.52 x 10^8 particles/ml

Measurement Conditions

Temperature: 22.00 °C Viscosity: 1.10 cP Frames Per Second: 36.27 Measurement Time: 60 of 60 seconds Drift Velocity: 3549 nm/s

Analysis Conditions

Arranysis Conditions Brightness: -0 Gain: 1.00 Blur: 5x5 Detection Threshold: Auto Max Blob Size (pixel area): 3000 Min Track Length: Auto Min Expected Size: 100 nm

Figure FS8 The DLS results for the freshly prepared sample of clear solution produced by dilution of ethanol-precipitated TiBALDH with excess of water

Fig FS11 NOESY spectrum of TiBALDH in the lactate C*H*-region (water signal in the text of the paper is omitted for clarity)

Figure FS12

NOESY spectrum of TiBALDH in the lactate CH_3 -region (water signal in the text of the paper is omitted for clarity)

NOESYPHPR

