Porous ZnO Nanosheet Arrays Constructed on Weaved Metal Wire for Flexible Dye-Sensitized Solar Cells

Hui Dai, Yong Zhou, Liang Chen, Binglei Guo, Aidong Li, Jianguo Liu, Tao Yu, and Zhigang Zhou

a National Laboratory of Solid State Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), Nanjing 210093, P. R. China.

E-mail: zhourong1999@nju.edu.cn

b School of Physics, Nanjing University, Nanjing 210093, P. R. China.

E-mail: zgzou@nju.edu.cn

c Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, P. R. China.

d College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
Supporting Information

Figure S1. FE-SEM image shows the ZnO on WMW substrate without ZnO seeded layer.
Figure S2. (a) Cross-section and (b) top-view FE-SEM images of ZnO NW array on WMW.
Figure S3. Absorption spectrum showing the amount of dye molecules desorbed from the ZnO-NS and NW films sensitized for 1.5h.
Figure S4. Diffuse-reflectance spectra of the ZnO-NS and NW films.
Figure S5. High magnification FE-SEM image shows the surface structure of ZnO NS coated with TiO$_2$.
Figure S6. EDS spectrum of the TiO$_2$ coated ZnO. The inset is a enlargement of the special part showing the peak of Ti Ka.
Figure S7. XPS spectrum of the TiO$_2$ coated ZnO with scan steps of 1 eV for a full range. The inset is a detailed scan (0.1 eV) for TiO$_2$ showing the peak of Ti2p with binding energy of 458.2 eV.