Supplementary Information

A simple way to prepare Au@polypyrrole/Fe₃O₄ hollow capsules with high stability and their application in catalytic reduction of methylene blue dye

Tongjie Yao, Tieyu Cui, Hao Wang, Linxu Xu, Fang Cui and Jie Wu
Fig. S1 Energy-dispersive X-ray absorption (EDX) spectroscopy of the Au@PPy/Fe₃O₄ hollow capsules. The signal of Si raise from detector of TEM, while Cu is attributed to the sample grid film. It is necessary to mention that the signal of C partly raise from PPy shell and partly raise from grid film.
Fig. S2 High-resolution Fe 2p XPS spectrum of Au@PPy/Fe$_3$O$_4$ hollow capsules.
Fig. S3 Magnetization curves at 5 K of Au@PPy/Fe₃O₄ hollow capsules. The magnetization at 5 K is 31.6, 39.3 and 40.4 emu/g for samples prepared with 10, 30 and 50 mg FeCl₂·4H₂O, respectively.
Fig. S4 The rate constant k of precursor PS/Au composites estimated by the slopes of straight lines of $\ln(A_t/A_0)$ vs. reaction time.
Fig. S5 UV-Vis spectra of the MB dye and NaBH$_4$ mixture in absence of catalysts at different times. Inset shows the rate constant k estimated by the slopes of straight lines of ln(A_t/A_0) vs. reaction time.
Fig. S6 The rate constant k estimated by the slopes of straight lines of $\ln(A_t/A_0)$ vs. reduction time using 0.1 mg catalysts at different reused circles: (a) 2nd; (b) 3rd; (c) 4th; and (d) 5th. Here, the time that catalytic reaction started is set as the beginning time ($t = 0$).