Supplementary information

Fabrication of Large Scale Single Crystal Bismuth Telluride (Bi₂Te₃) Nanosheet Arrays by Single Step Electrolysis Process

Hung-Wei Tsai,¹Tsang-Hsiu Wang,¹Tsung-Cheng Chan,¹Pei-Ju Chen,²Chih-Chun Chung,¹ Alireza Yaghoubi³, Chien-Neng Liao,¹Eric Wei-Guang Dia², and ¹Yu-Lun Chueh^{1,4*}

¹Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan

² Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan

³Centre for High Impact Research, University of Malaya, Kuala Lumpur 50603, Malaysia.

⁴Center For Nanotechnology, Material Science, and Microsystem, *ational Tsing Hua University, Hsinchu,* 30013, Taiwan

*E-mail:ylchueh@mx.nthu.edu.tw

Calcualtion of the bond energies of Te⁽¹⁾-Bi, Te⁽²⁾-Bi, and Te⁽¹⁾- Te⁽¹⁾ in Bi₂Te₃:

According to the calculation results of Kaviany and co-workers, the calculated bond energies of Te⁽¹⁾-Bi,

Te⁽²⁾-Bi, and Te⁽¹⁾- Te⁽¹⁾ in Bi₂Te₃ can be obtained as shown in below.

For Te⁽¹⁾ atom: bonds with three Bi and three Te⁽¹⁾ atoms

 $=> 3 \times 0.974 + 3 \times 0.0691 = 3.1293 eV$

For Te⁽²⁾ atom: bonds with six Bi atoms

 $=> 6 \times 0.5801 = 3.4806 \, eV$

For Bi atom: bonds with three Te⁽¹⁾ and three Te⁽²⁾ atoms

=> 3×0.974 +3×0.5801=4.6623eV

Existence of H₂Te gas during the electrolysis process

In order to prove the existence of H_2Te gas during the electrolysis process, we design an experiment as shown in Figure S1 (a). A Si substrate was suspended upon the electrolyte while doing the electrolysis process and the tellurium was formed by the decomposition of H_2Te gas^[1]. Figure S1 (b) shows the schematics of formation of H_2Te derived Te , and the reaction process can be visualized as below:

$$H_2Te_{(g)} + \frac{1}{2}O_2 \rightarrow H_2O + Te_{(s)}$$

The H₂Te derived Te was distinguished by Raman spectrum. In the Raman spectrum of H₂Te derived Te, three peaks are located at 92.4, 121.6, and 141.1 cm⁻¹, corresponding to optical modes of E^1 , A₁, and E^u , respectively^[2], as shown in Figure S1(d). These three peaks are consistent with the results from pure Te ingot. The SEM image of H₂Te derived Te is shown in Figure S1(c) and reveals the blade shape.

Figure S1. (a) Suspended Si substrate upon the electrolyte. (b) Schematics of H_2 Te derived Te. (c) SEM image of H_2 Te derived Te. (d) Raman spectrum of Te ingot and H_2 Te derived Te.

REFERENCES

- [1] T. Engelhard, E. D. Jones, I. Viney, Y. Mastai, G. Hodes, *Thin Solid Films* 2000, 370, 101-105.
- [2] B. H. Torrie, *Solid State Communications* **1970**, *8*, 1899-1901.