Supplementary information for the manuscript ‘Design principles for helices with tunable pitch and Bernal spirals’

Szilard N. Fejera,b,\hspace{1em}∗ Dwaipayan Chakrabartic,\hspace{1em}†
Halim Kusumaatmajad,\hspace{1em}‡ and David J. Walese,\hspace{1em}§

a Department of Chemical Informatics, University of Szeged, Faculty of Education, Boldogasszony sgt. 6, H-6725 Szeged, Hungary

b Pro-Vitam Ltd., str. Muncitorilor nr. 16, 520032 Sfantu Gheorghe, Romania

c School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

d Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom

e University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom

\hspace{1em}∗Electronic address: szilard.fejer@cantab.net
\hspace{1em}†Electronic address: d.chakrabarti@bham.ac.uk
\hspace{1em}‡Electronic address: halim.kusumaatmaja@durham.ac.uk
\hspace{1em}§Electronic address: dw34@cam.ac.uk
I. SUPPLEMENTARY MOVIE 1 LEGEND

This movie shows the fastest rearrangement mechanism between a 20 particle Bernal spiral and a symmetrical cyclic structure, which is a kinetic trap on the energy landscape for 20 particles. The first four rearrangements along the pathway are low-energy ‘hinge’ motions.

II. SUPPLEMENTARY MOVIE 2 LEGEND

This movie shows the fastest pathway for inverting the chirality of a left-handed $N = 24$ helical structure. The rearrangement proceeds exclusively through low-energy ‘hinge’ motions.

III. SUPPLEMENTARY MOVIE 3 LEGEND

This movie shows the transformation of a 24-particle spiral into a highly symmetric ‘donut’-structure, which is the global minimum for this number of particles. The second rearrangement along the pathway has a high energy barrier, and corresponds to a change in dimerization pattern between the four particles at the lower end of the helix. All other motions are low-energy ‘hinge’ rearrangements.