Supporting information

Chiromers: Conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes

Usha D. Hemraz,^a,b^ Mounir El-Bakkari,^a,b^ Takeshi Yamazaki,^a,b^ Jae-Young Cho,^b^ Rachel L. Beingessner^b^ and Hicham Fenniri^*,a,b,c,d^

^a^Department of Chemistry, University of Alberta,
^b^National Institute for Nanotechnology,
11421 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2M9
^c^Department of Chemical and Biomedical Engineering, 313 Snell Engineering Center,
360 Huntington Avenue, Northeastern University, Boston, MA 02115
E-mail: h.fenniri@neu.edu
^d^Biomedical Engineering Research Center, Qatar Biomedical Research Institute, P.O. Box 5825, Doha, Qatar.

Table of Contents

General Methods ... 2
Synthetic procedures .. 3-9
Sample preparation for characterization by microscopy and spectroscopy ... 10
Characterization data of R-TBL, S-TBL, K-C2-TBL and K-C4-TBL ... 11-13
SEM images of K1T-K9T in unbuffered water ... 14
Molecular modeling .. 15-18
STEM and TEM images of K1T-K15T 19-20
UV-vis spectroscopy of KnT RNTs 21-22
Ellipticity at 301 nm of KnT RNTs at pH 7 and pH 11 ... 23
CD spectroscopy of KnT RNTs in unbuffered water, at pH 7 and pH 11 ... 24-25
References .. 26
General Methods.

All reactions were performed under an atmosphere of N\textsubscript{2}, unless stated otherwise. Reagent grade CH\textsubscript{2}Cl\textsubscript{2} and MeOH were purified on an MBraun solvent purification system. All other solvents and reagents were used without further purification. Reactions were monitored by TLC analysis using UV254 pre-coated TLC plates and visualized under UV light. 1H and 13C NMR spectra were in the specified deuterated solvents. The NMR data is presented as follows: chemical shift \(\delta\) (ppm), multiplicity, coupling constant and integration. The following abbreviations were used to explain the multiplicities: \(s\) = singlet, \(d\) = doublet, \(t\) = triplet, \(m\) = multiplet, \(bs\) = broad singlet. The 1H NMR and 13C NMR spectra were calibrated using 3-(trimethylsilyl)-1-propanesulfonic acid sodium salt (TMS = 0.0) as the internal reference.
Fig. S1. Synthetic scheme for synthesis of R-TBL (4)

Synthesis of 2: (R)-butan-2-amine (26 μL, 0.352 mmol) was added to a solution of G\(\text{C}\) aldehyde 1\(^1\) (0.150 g, 0.234 mmol) in 1,2 DCE (20 mL) at room temperature under \(\text{N}_2\) and stirred for 30 min. Sodium triacetoxy borohydride (0.078 g, 0.371 mmol) was added and the resulting mixture was stirred for an additional 24 h. The reaction mixture was diluted with \(\text{CH}_2\text{Cl}_2\) (50 mL), washed with water (20 mL), brine (20 mL), dried over \(\text{Na}_2\text{SO}_4\) and concentrated. Purification by flash chromatography over silica gel (0-5% MeOH in \(\text{CH}_2\text{Cl}_2\)) gave 2 (0.066 g, 40%) as a white foam. \(R_f = 0.39\) (5% MeOH in \(\text{CH}_2\text{Cl}_2\)); \([\alpha]_D^{25} = -2.4^\circ\) (c = 1.5 in CHCl\(_3\)); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.45-7.33\) (m, 5H), 5.56 (s, 2H), 4.47 (t, \(J = 6.6\) Hz, 2H), 3.46 (s, 3H), 3.07 (m, 2H), 2.70 (m, 2H), 1.58 (s, 9H), 1.48-1.39 (m, 2H), 1.34 (s, 18H), 1.05 (d, \(J = 6.3\) Hz, 3H), 0.85 (t, \(J = 7.5\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 165.7, 161.1, 160.9, 160.4, 155.8, 152.6, 149.2, 134.9, 128.6, 128.5, 128.3, 93.1, 83.8, 83.2, 70.1, 54.5, 44.2, 43.1, 34.9, 28.2, 27.8, 19.0, 10.2 ppm; HRMS: calcd for C\(_{35}\)H\(_{52}\)N\(_7\)O\(_8\)[M+H]\(^+\): 698.3872; found: 698.3873.

Synthesis of 3: Compound 2 (0.150 g, 0.215 mmol) was added to a solution of G\(\text{C}\) aldehyde 1 (0.138 g, 0.216 mmol) in 1,2 DCE (20 mL) at room temperature under \(\text{N}_2\) and stirred for 30 min. Sodium triacetoxy borohydride (0.051 g, 0.243 mmol) was added and
the resulting mixture was stirred for an additional 30 h. The reaction mixture was diluted with CH₂Cl₂ (50 mL) and then washed with water (2 x 10 mL), brine (15 mL), dried over Na₂SO₄ and concentrated. Flash chromatography of the residue over silica gel (0-30% EtOAc in hexanes) gave 3 (0.103 g, 36%) as a white foam. Rₜ = 0.44 (30% EtOAc in hexanes); [α]D²⁵ = +10.6° (c = 0.7 in CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ = 7.44-7.31 (m, 10H), 5.56 (s, 4H), 4.34 (m, 4H), 3.48 (s, 6H), 2.90 (m, 2H), 2.81 (q, J = 6.4 Hz, 1H), 2.73 (m, 2H), 1.55 (m, 18H), 1.48-1.39 (m, 2H), 1.30 (s, 36H), 0.90 (d, J = 6.0 Hz, 3H), 0.86 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ = 165.7, 161.3, 161.1, 160.3, 155.6, 152.6, 149.3, 149.2, 135.1, 128.7, 128.6, 92.9, 84.0, 82.8, 70.3, 54.0, 47.3, 43.0, 35.0, 29.5, 28.1, 27.9, 14.7, 11.7 ppm; HRMS: calcd for C₆₆H₉₂N₁₃O₁₆[M+H]+: 1322.6780; found: 1322.6783.

Synthesis of 4: Compound 3 (0.066 g, 0.050 mmol) was stirred in a 95% TFA in thioanisole (10 mL) for 72 h. Et₂O (60 mL) was then added to the reaction mixture and the precipitate formed, was centrifuged down. The residual solid was resuspended in Et₂O, sonicated and centrifuged down. This process was repeated until the spotting of the Et₂O produced no UV active spot. The solid was dried under vacuo for 72 h to give 4 (0.033 g, 89%) as an off-white powder in quantitative yield. ¹H NMR (600 MHz, d₆-DMSO) δ = 12.30 (s, 2H), 11.50 (bs, 1H) 9.17 (s, 2H), 8.84 (bs, 2H), 8.43 (bs, 2H), 4.53 (m, 4H), 3.42 (m, 5H, merged with H₂O peak), 2.95 (d, J = 4.8 Hz, 6H), 2.03 (m, 1H), 1.42 (m, 1H), 1.29 (s, 3H), 0.91 (s, 3H); ¹³C NMR (150 MHz, [D₆]DMSO) δ = 161.3, 160.3, 156.6, 156.2, 148.3, 83.0, 60.6, 47.0, 46.8, 37.2, 28.4, 12.6, 10.8 ppm; HRMS: calcd for C₂₂H₃₁N₁₃O₄[M+H]+: 543.2768; found: 271.6381; elemental analysis calcd (%) for C₂₂H₃₁N₁₃O₄(HCl)₄(H₂O)₂(Et₂O)₀.₂₅: C 37.23, H 5.64, N 24.54; found: C 37.74, H 5.22, N 24.13.
Fig. S2. Synthetic scheme for synthesis of S-TBL (7)

Synthesis of 5: (S)-butan-2-amine (26 μL, 0.352 mmol) was added to a solution of G\(\land\)C aldehyde 1 (0.150 g, 0.234 mmol) in 1,2 DCE (20 mL) at room temperature under \(\text{N}_2\) and stirred for 30 min. Sodium triacetoxy borohydride (0.078 g, 0.371 mmol) was added and the resulting mixture was stirred for an additional 24 h. The reaction mixture was diluted with \(\text{CH}_2\text{Cl}_2\) (50 mL), washed with water (20 mL), brine (20 mL), dried over Na\(_\text{2SO}_4\) and concentrated. Flash chromatography of the residue over silica gel (0-5% MeOH in \(\text{CH}_2\text{Cl}_2\)) gave 5 (0.074 g, 45%) as a white foam. \(R_f = 0.39\) (5% MeOH in \(\text{CH}_2\text{Cl}_2\)); \([\alpha]_D^{25} = +2.0^\circ\) (c = 2.4, \(\text{CHCl}_3\)); \(^1\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta = 7.44-7.32\) (m, 5H), 5.56 (s, 2H), 4.47 (t, \(J = 6.7\) Hz, 2H), 3.46 (s, 3H), 2.70 (m, 2H), 1.58 (s, 9H), 1.48-1.41 (m, 2H), 1.33 (s, 18H), 1.05 (d, \(J = 6.3\) Hz, 3H), 0.85 (t, \(J = 7.5\) Hz, 3H); \(^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3) \delta = 165.7, 161.1, 160.9, 160.4, 155.8, 152.6, 149.2, 134.9, 128.6, 128.5, 128.3, 93.0, 83.8, 83.1, 70.1, 54.5, 44.2, 43.2, 34.9, 28.1, 27.8, 19.0, 10.1 \text{ ppm}; \) HRMS: calcd for C\(_{35}\)H\(_{52}\)N\(_7\)O\(_8\) [M+H]: 698.3872; found: 698.3876.

Synthesis of 6: Compound 5 (0.150 g, 0.215 mmol) was added to a solution of compound 1 (0.138 g, 0.216 mmol) in 1,2 DCE (20 mL) at room temperature under \(\text{N}_2\) and stirred for 30 min. Sodium triacetoxy borohydride (0.051 g, 0.243 mmol) was added and the
resulting mixture was stirred for an additional 30 h. The reaction mixture was diluted with CH$_2$Cl$_2$ (50 mL) and then washed with water (2 x 10 mL), brine (15 mL), dried over Na$_2$SO$_4$ and concentrated. Flash chromatography of the residue over silica gel (0-30% EtOAc in hexanes) gave 6 (0.096 g, 34%) as a white foam. R_f = 0.44 (30% EtOAc in hexanes); $[\alpha]_{D}^{25}$ = -11.1° (c = 0.7, CHCl$_3$); 1H NMR (600 MHz, CDCl$_3$) δ = 7.45-7.31 (m, 10H), 5.56 (s, 4H), 4.36 (bs, 4H), 3.48 (s, 6H), 2.91 (bs, 2H), 2.83 (bs, 1H), 2.75 (bs, 2H), 1.55 (s, 18H), 1.47-1.38 (m, 2H), 1.30 (s, 36H), 0.92 (bs, 3H), 0.87 (t, J = 6.9 Hz, 3H); 13C NMR (150 MHz, CDCl$_3$) δ = 165.6, 161.2, 161.0, 160.2, 155.6, 152.5, 149.2, 149.1, 135.0, 128.5, 128.5, 92.8, 83.6, 82.8, 70.0, 53.4, 47.2, 35.0, 28.1, 27.8, 14.6, 11.6 ppm; HRMS: calcd for C$_{66}$H$_{92}$N$_{13}$O$_{16}$[M+H]$^+$: 1322.6780; found: 1322.6779.

Synthesis of 7: Compound 6 (0.063 g, 0.048 mmol) was stirred in a 95% TFA in thioanisole (10 mL) for 72 h. Et$_2$O (60 mL) was then added to the reaction mixture and the precipitate formed, was centrifuged down. The residual solid was resuspended in Et$_2$O, sonicated and centrifuged down. This process was repeated until the spotting of the Et$_2$O produced no UV active spot. The solid was dried under vacuo for 72 h to give 7 in quantitative yield. 1H NMR (600 MHz, d$_6$-DMSO) δ = 12.30 (s, 2H), 11.42 (bs, 1H), 9.17 (s, 2H), 8.84 (bs, 2H), 8.41 (bs, 2H), 4.53 (m, 4H), 3.38 (m, 5H, merged with H$_2$O peak), 2.94 (d, J = 4.8 Hz, 6H), 2.00 (m, 1H), 1.45 (m, 1H), 1.29 (s, 3H), 0.91 (s, 3H); 13C NMR (150 MHz, [D$_6$]DMSO) δ = 161.2, 160.3, 156.6, 156.3, 148.2, 83.0, 60.5, 47.0, 46.4, 37.2, 28.4, 12.6, 10.8 ppm; HRMS: calcd for C$_{22}$H$_{33}$N$_{13}$O$_{4}$ [M+H]$^+$: 543.2768; found: 543.2768; elemental analysis calcd (%) for C$_{22}$H$_{31}$N$_{13}$O$_{4}$HCl$_3$(H$_2$O)$_2$(Et$_2$O)$_{0.25}$: C 38.17, H 5.71, N 25.16. found C 38.01, H 5.39, N 25.24.
Fig. S3. Synthetic scheme for synthesis of K-C4-TBL (14)

Synthesis of 10: A stirred solution of (9H-fluoren-9-yl)methyl 4-aminobutylcarbamate hydrochloride 8 (1.00 g, 2.89 mmol) in DMF (10 mL) was treated with DIPEA (0.51 mL, 2.9 mmol) and the mixture was stirred for 20 min at room temperature under N₂. N-α,ε-di-Boc-L-lysine 9 (1.00 g, 2.89 mmol) and HBTU (1.64 g, 4.33 mmol) were then added and the resulting mixture was stirred for another 7 h. The reaction mixture was diluted with Et₂O (50 mL) and then washed with water (2 x 10 mL), citric acid (10 mL), NaHCO₃ (10 mL), brine (15 mL), dried over Na₂SO₄, filtered and concentrated.

Purification by flash chromatography over silica gel (10-100% EtOAc in hexanes) gave 10 as an off-white foam in 92% yield. *R*ₐ = 0.33 (50% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃) *δ* = 7.74 (d, *J* = 7.6 Hz, 2H), 7.58 (d, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.29 (t, *J* = 7.0 Hz, 2H), 6.31 (bs, 1H), 5.12 (bs, 1H), 5.01 (bs, 1H), 4.61 (bs, 1H), 4.38 (d, *J* = 6.4 Hz, 2H), 4.19 (t, *J* = 6.8 Hz, 1H), 3.99 (m, 1H), 3.26 (m, 2H), 3.19 (m, 2H), 3.08 (t, *J* = 6.4 Hz, 2H), 1.80-1.46 (m, 8H), 1.42 (s, 18H), 1.38-1.33 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) *δ* = 158.8, 158.0, 144.0, 141.4, 127.6, 127.0, 125.1, 119.9,
Synthesis of 11: Compound 10 (1.19 g, 1.87 mmol) was stirred in DMF (10 mL) and piperidine (1.6 mL) for 2 h at room temperature under N₂. The reaction mixture was concentrated. Purification of the residue by flash chromatography over silica gel (100-90% EtOAc in MeOH) gave 11 as a colorless oil in 90% yield. Rf = 0.21 (75% EtOAc in MeOH); ¹H NMR (300 MHz, CDCl₃) δ = 6.89 (bs, 1H), 5.21 (bs, 1H), 4.72 (bs, 1H), 4.01 (q, J = 6.3 Hz, 2H), 3.26 (q, J = 5.7 Hz, 2H), 3.10 (q, J = 6.6 Hz, 2H), 2.75 (t, J = 6.2 Hz, 2H), 1.86-1.75 (m, 2H), 1.67 (s, 9H), 1.63-1.48 (m, 6H), 1.44 (s, 9H), 1.39-1.23 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 172.0, 156.2, 155.2, 79.9, 79.0, 50.6, 41.2, 39.6, 39.1, 32.1, 29.9, 29.5, 28.3, 28.2, 26.7, 22.5 ppm; HRMS: calcd for C₂₀H₄₀N₄O₅ [M+H]+: 417.3076; found: 417.3072.

Synthesis of 12: Compound 1 (0.443 g, 0.692 mmol) was added to a stirred solution of 11 (0.288 g, 0.692 mmol) in 1,2 DCE (20 mL) at room temperature under N₂. The mixture was stirred for 30 min before addition of sodium triacetoxyborohydride (0.176 g, 0.800 mmol) and the resulting mixture was stirred for an additional 15 h. The reaction mixture was diluted with CH₂Cl₂ (50 mL) and then washed with water (2 x 10 mL), brine (15 mL), dried over Na₂SO₄ and concentrated. Purification by flash chromatography over silica gel (0-3% MeOH in CH₂Cl₂) gave 12 as a white foam in 65% yield. Rf = 0.37 (5% MeOH in CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ = 7.43-7.32 (m, 5H), 6.75 (bs, 1H), 5.56 (s, 2H), 5.31 (d, J = 8.0 Hz, 2H) 4.75 (bs, 1H), 4.50 (m, 2H), 4.03 (bs, 1H), 3.46 (s, 3H), 3.22 (m, 2H), 3.12-3.03 (m, 4H), 2.74 (m, 2H), 1.85-1.59 (m, 4H), 1.57 (s, 9H), 1.54-1.46 (m, 2H), 1.41 (s, 18H), 1.39-1.33 (m, 2H), 1.32 (s, 18H), 1.28-1.19 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ = 172.5, 165.6, 161.0, 160.8, 156.1, 155.8, 155.7, 152.4, 149.3, 134.6, 128.5, 128.0, 127.6, 113.8, 93.3, 84.0, 83.5, 79.5, 78.8, 70.2, 54.3, 48.0, 46.3, 40.8, 40.0, 38.3, 35.0, 32.3, 29.3, 28.3, 28.2, 28.0, 27.7, 26.2, 23.8, 22.5 ppm; HRMS: calcd for C₅₁H₈₁N₁₀O₁₃ [M+H]+: 1041.5979; found: 1041.5983.

Synthesis of 13: Compound 1 (0.192 g, 0.298 mmol) was added to a solution of 12 (0.311 g, 0.299 mmol) in 1,2 DCE (20 mL) at room temperature under N₂ and stirred for
30 min. Sodium triacetoxy borohydride (0.074 g, 0.352 mmol) was added and the resulting mixture was stirred for an additional 15 h. The reaction mixture was diluted with CH$_2$Cl$_2$ (50 mL) and then washed with water (2 x 10 mL), brine (20 mL), dried over Na$_2$SO$_4$ and concentrated. Flash chromatography of the residue over silica gel (10-80% EtOAc in hexanes) gave 13 (0.326 g, 66%) as a white foam. R$_f$ = 0.42 (70% EtOAc in hexanes); 1H NMR (500 MHz, CDCl$_3$) δ = 7.45-7.28 (m, 10H), 6.64 (bs, 1H), 5.57 (s, 4H), 4.77 (bs, 1H), 4.37 (m, 4H), 4.11 (m, 2H), 3.48 (s, 6H), 3.33 (m, 1H), 3.18 (m, 1H), 3.08 (m, 2H), 2.90 (t, J = 6.5 Hz, 4H), 2.67 (app. q, J = 7.5 Hz, 2H), 1.62-1.58 (m, 2H), 1.56 (s, 18H), 1.54-1.43 (m, 6H), 1.42 (s, 9H), 1.41 (s, 9H), 1.32 (s, 18H), 1.31 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ = 172.2, 171.0, 165.5, 161.2, 160.9, 160.2, 156.2, 156.0, 155.6, 152.4, 149.2, 149.1, 134.8, 128.4, 128.3, 127.7, 113.8, 92.8, 83.6, 82.8, 70.0, 60.3, 54.4, 50.8, 41.1, 40.1, 38.9, 34.9, 32.4, 29.4, 28.3, 28.2, 28.0, 27.7, 26.7, 24.6, 22.7 ppm; HRMS:calcd for C$_{82}$H$_{120}$N$_{16}$O$_{21}$Na$^{[M+Na]^+]$: 1687.8706; found: 1687.8700.

Synthesis of 14: Compound 13 (0.093 g, 0.0558 mmol) was stirred in 95% TFA in thioanisole (10 mL) for 72 h. Et$_2$O (60 mL) was then added to the reaction mixture and the precipitate formed was stirred for another 30 min, after which it was centrifuged down. The residual solid was resuspended in Et$_2$O, sonicated and centrifuged down. This process was repeated until the spotting of the Et$_2$O produced no UV active spot. The white solid obtained (0.069 g, 91%) was dried under vacuo. 1H NMR (600 MHz, d$_6$-DMSO) δ = 12.32 (s, 2H), 11.50 (s, 1H), 9.20 (s, 2H), 9.83 (bs, 3H), 8.46 (bs, 2H), 8.31 (bs, 3H), 8.03 (bs, 3H), 4.50 (bs, 4H), 3.77 (m, 1H), 3.52-3.40 (m, 6H, merged with water peak), 3.19-3.09 (m, 2H), 2.92 (d, J = 4.8 Hz, 6H), 2.79-2.74 (m, 2H), 1.82-1.65 (m, 4H), 1.61-1.43 (m, 4H), 1.41-1.32 (m, 2H); 13C NMR (125 MHz, [D$_6$]DMSO) δ = 168.2, 160.7, 159.7, 156.2, 155.7, 148.0, 82.6, 51.8, 48.5, 38.1, 37.8, 30.2, 28.9, 28.5, 27.8, 26.1, 25.8, 21.1 ppm; HRMS calcd for C$_{28}$H$_{43}$N$_{16}$O$_{5}$ [M-2H]$^+$: 685.3753; found: 685.3759; elemental analysis calcd (%) for C$_{28}$H$_{44}$N$_{16}$O$_5$(TFA)$_5$H$_2$O: C 34.75, H 4.00, N 16.63; found C 35.15, H 4.40, N 16.40; elemental analysis calcd (%) for C$_{28}$H$_{44}$N$_{16}$O$_5$(HCl)$_8$(H$_2$O)$_3$(Et$_2$O)$_{0.25}$: C 33.20, H 5.81, N 21.36; found C 33.12, H 5.93, N 21.42.
Sample preparation for characterization by microscopy and spectroscopy

Scanning electron microscopy (SEM)
The SEM samples were prepared by floating a carbon-coated 400-mesh copper grid (Electron Microscopy Sciences) on a droplet of the diluted RNT solution for 10 s. The grid was blotted using filter paper. The RNT-coated grid was then air-dried and heated on a hotplate (70 °C) for 15 min before imaging to remove any residual solvents. SEM images were obtained without negative staining (unless indicated otherwise), at 5 kV or at 30 kV accelerating voltage, 20 μA and a working distance of 5 to 8 mm on a high-resolution Hitachi S-4800 cold field emission SEM. For the STEM images, uranyl acetate (2% aqueous solution) was used for staining the samples.

Transmission electron microscopy (TEM)
Samples were prepared by depositing a drop of prepared solution on a carbon-coated 400-mesh copper grid and blotted after 10 s. The sample was stained using uranyl acetate (2% aqueous solution). The grid was then blotted, air-dried and heated on the hotplate prior to imaging. The samples were visualized on JEOL 2200 FS TEM – 200kV Schottky field emission instrument equipped with an in-column omega filter. Bright field TEM images are acquired using energy filtered zero loss beam (slit width 10 ev).

UV–Vis spectroscopy
All UV-Vis spectra were recorded on an Agilent 8453 UV/Vis spectrometer. The absorption spectra of the diluted samples were recorded by taking aliquots of the stock solutions and diluting them to 2.2×10^{-5} M at 20 °C in unbuffered water at different time intervals.
Fig. S4. SEM images of R-TBL (A, B) and S-TBL (C, D) in methanol (A, C) and water (B, D) after 1 day of aging. Concentration = 3.34×10^{-5} M. Scale bar 300 nm.
Fig. S5. SEM images of K-C2-TBL (A, B) and K-C4-TBL (C, D) in methanol (A, C) and water (B, D) after 1 day of aging. Concentration = 2.46 x 10^{-5} M. Scale bar 300 nm.
Fig. S6. Variable temperature CD of K-C4-TBL (2.46 x 10^-5 M) in methanol from 20 °C to 50 °C.

Fig. S7. Self-assembly of K3T in methanol and its corresponding CD profile after 25 days. Scale bar = 300 nm.
Fig. S8. SEM images in unbuffered water of freshly prepared samples of (A) K1T (1 × 10⁴ M), (B) K2T (8.4 × 10⁻⁵ M), (C) K3T (3.3 × 10⁻⁵ M), (D) K4T (1.9 × 10⁻⁵ M), (E) K5T (5.1 × 10⁻⁵ M). SEM images in unbuffered water after one week of aging (F) K6T (4.4 × 10⁻⁵ M), (G) K7T (7.9 × 10⁻⁵ M), (H) K8T (3.5 × 10⁻⁵ M), (I) K9T (3.3 × 10⁻⁵ M). Scale bar = 300 nm.
Molecular modeling

Initial conformations \(3 \times 3 \times 3 \times 3 = 243\) of K2T and K3T were generated by varying five dihedral angles, as indicated below. The carboxylic and amino groups were taken to be neutral such that the motifs have zero net charge.

243 RNTs consisting of 7 twin-rosette stacks with a staggered angle of 30° and stacking distance of 4.0 Å were generated.\(^2\)\(^3\) The RNT conformations were optimized by fixing the top two and bottom two rosette stacks as well as all of the G\(\wedge\)C bases to reduce the end effect. The central rosette stack was taken from the optimized RNTs to finally construct RNTs composed of \(N=1\sim7\) twin-rosette stacks. Due to the steric repulsion, 224 out of 243 K2T motifs and 202 out of 243 K3T motifs were able to form RNTs. The free energy as the sum of internal energy by molecular mechanics and the solvation free energy by 3D-RISM\(^4\) theory with OPLS force field\(^5\) were then calculated. As illustrated in Fig. S9 (A, B), K2T RNT (087) and K3T RNT (024) were determined to be the most stable RNTs in water. The negative association free energies for these RNTs suggest that they would be formed in water (Fig. S9).
Figure S9. Free energy plots of (A) K2T and (B) K3T illustrating the most stable RNTs 087 and 024 respectively. Association free energy plots of (C) K2T (087) and (D) K3T (024).
Fig. S10. Modeling showing motif (A, B), rosette (C, D) and RNT (E, F) of K2T (087) and K3T (024) respectively.
Fig. S11. Molecular models showing rosettes of K2T (A) and K3T (D), helicity of K2T (B) and K3T (E) RNTs due to orientation of L-oligo-lysine chains, and inter-rosette hydrogen-bonding interactions in K2T (C) and K3T (F) RNTs. K2T and K3T motifs have opposite chiralities, which agrees with the CD data.
Fig. S12. STEM images of negatively stained samples using uranyl acetate. Samples were aged for 2 weeks before casting onto the grids. (A) K10T (8.8 × 10^{-5} M), pH 10, (B) K11T (5.4 × 10^{-5} M), pH 10 (C) K12T (6.9 × 10^{-5} M), pH 10 (D) K13T (4.9 × 10^{-5} M), pH 11 (E) K14T (3.1 × 10^{-5} M), pH 11 (F) K15T (5.7 × 10^{-5} M), pH 11.
Fig. S13. TEM images negatively stained with uranyl acetate of (A) K1T (8.4×10^{-5} M), (B) K2T (8.4×10^{-5} M), (C) K3T (1.7×10^{-5} M), (D) K4T (2.9×10^{-5} M), (E) K5T (1.3×10^{-5} M), (F) K6T (4.4×10^{-5} M), (G) K7T (1.2×10^{-5} M), (H) K8T (3.5×10^{-5} M), (I) K9T (3.3×10^{-5} M), (J) K10T (1.9×10^{-5} M), pH 10 (K) K11T (1.8×10^{-5} M), pH 10 (L) K12T (6.9×10^{-5} M), pH 10 (M) K13T (1.6×10^{-5} M), pH 11 (N) K14T (3.1×10^{-5} M), pH 11 (O) K15T (5.7×10^{-5} M), pH 11. Scale bar = 50 nm.

Table 1. Diameter of RNTs, measured by TEM.

<table>
<thead>
<tr>
<th>Modules</th>
<th>Diameter (nm)</th>
<th>Modules</th>
<th>Diameter (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1T</td>
<td>3.3 ± 0.2</td>
<td>K9T</td>
<td>6.3 ± 0.2</td>
</tr>
<tr>
<td>K2T</td>
<td>4.1 ± 0.5</td>
<td>K10T</td>
<td>7.1 ± 0.2</td>
</tr>
<tr>
<td>K3T</td>
<td>4.4 ± 0.5</td>
<td>K11T</td>
<td>7.2 ± 0.2</td>
</tr>
<tr>
<td>K4T</td>
<td>5.0 ± 0.5</td>
<td>K12T</td>
<td>7.4 ± 0.2</td>
</tr>
<tr>
<td>K5T</td>
<td>5.1 ± 0.2</td>
<td>K13T</td>
<td>8.1 ± 0.2</td>
</tr>
<tr>
<td>K6T</td>
<td>5.2 ± 0.2</td>
<td>K14T</td>
<td>8.2 ± 0.2</td>
</tr>
<tr>
<td>K7T</td>
<td>5.4 ± 0.2</td>
<td>K15T</td>
<td>8.7 ± 0.3</td>
</tr>
<tr>
<td>K8T</td>
<td>6.1 ± 0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. S14. UV-vis spectroscopy of RNTs in unbuffered water (2.2 x 10^{-5} M), monitored at room temperature over time: (A) K1T (B) K2T (C) K3T (D) K4T (E) K5T (F) K6T (G) K7T (H) K8T (I) K9T. All of these motifs show a hypochromic shift, indicating self-assembly. Red arrows for K5T – K9T indicate the time required for a 50% change in absorbance, which is shown to increase from 4 hr to > 1 month as the length of the peptide increases.
Fig. S15. UV-vis spectroscopy of RNTs in buffered conditions (2.2 x 10^{-5} M), monitored at room temperature over time: (A) K10T, pH 10 (B) K11T, pH 10 (C) K12T, pH 10 (D) K13T, pH 11 (E) K14T, pH 11 (F) K15T, pH 11. All of these motifs show a hypochromic shift, indicating self-assembly.
Fig. S16. Ellipticity at 301 nm of a 4.0 x 10^{-5} M solution of K1T – K9T at pH = 7

Fig. S17. Ellipticity at 301 nm of a 4.0 x 10^{-5} M solution of K1T – K15T at pH = 11
Fig. S18. CD spectra at 4.0 x 10^{-5} M of (A) K1T (B) K2T (C) K3T (D) K4T (E) K5T (F) K6T (G) K7T (H) K8T (I) K9T in unbuffered water (black), pH 7 (0.05 HEPES buffer, red) and pH 11 (0.05 CAPS buffer, blue).
Fig. S19. CD spectra at 4.0 x 10^{-5} M of (A) K10T (B) K11T (C) K12T (D) K13T (E) K14T (F) K1T at pH 11 (0.05 CAPS buffer).
References:

