Facile fabrication of hierarchical ZnCo$_2$O$_4$/NiO core/shell nanowire arrays with improved lithium-ion battery performance

Zhipeng Sun,a,b Wei Ai,a Jilei Liu,a Xiaoying Qi,c Yanlong Wang,a Jianhui Zhu,a Hua Zhang c and Ting Yua,d,e

a Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore. E-mail: yuting@ntu.edu.sg

b Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, 830011, China.

c School of Materials Science and Engineering, Nanyang Technological University, 63639798, Singapore.

d Department of Physics, Faculty of Science, National University of Singapore, 117542, Singapore.

e Graphene Research Centre, National University of Singapore, 117546, Singapore.
Fig. S1 SEM images with low and high magnifications of the precursor ZCO NWs grown on the Ni foam before annealing treatment, demonstrating the uniform growth of the array on a large scale.
Fig. S2 Side-view SEM image of the ZCO/NiO NWs. It is shown that the ZCO/NiO NWs are rigid and well separated, with inter-NWs spacing of micrometer scale, from which the length of NWs is about 7.0 µm.
Fig. S3 SEM images of the ZCO/NiO NWs obtained after CBD for different times, showing the morphology evolution of the core/shell nanowire arrays: (a) 10 min, (b) 20 min, (c) 35 min, and (d) 60 min.
Fig. S4 The EDX spectrum of ZCO/NiO NWs.
Fig. S5 Raman spectrum of ZCO/NiO NWs.
Fig. S6 XRD patterns of the pristine ZCO NWs (a) and ZCO/NiO NWs (b) grown on the Ni foam substrate.
Fig. S7 Nitrogen adsorption/desorption isotherm and pore-size distribution of the ZCO/NiO NWs (a) and ZCO NWs (b) electrodes which were scraped from the Ni foam.
Fig. S8 (a) The first three CV curves of ZCO NWs electrode at a scanning rate of 0.5 mV s$^{-1}$. (b) Nyquist plots of ZCO NWs and ZCO/NiO NWs after the first cycle.