Supplementary Information

Highly efficient and recyclable triple-shelled Ag@Fe₃O₄@SiO₂@TiO₂ photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions

Jianwei Su,* Yunxia Zhang,* Sichao Xu,* Shuan Wang,* Hualin Ding,* Shusheng Pan,* Guozhong Wang,* Guanghai Li*# and Huijun Zhao*#

Synthesis of TiO₂ microspheres
The TiO₂ microspheres were prepared via a typical solvothermal method reported previously.¹ Briefly, DETA (0.03 mL) was added to IPA (42 mL) under gently stirred, followed with the addition of TIP (1.5 mL). The obtained solution was then transferred into a 70 mL Teflon-lined stainless steel autoclave and kept at 200 °C for 24 h. The autoclave was left to cool down to room temperature naturally. The white products was collected by centrifugation, washed with ethanol, and dried at 60 °C overnight. The products were calcined at 400 °C for 2 h with a heating rate of 1°C·min⁻¹ to obtain a highly crystalline anatase phase.

Synthesis of Fe₃O₄@SiO₂@TiO₂ nanospheres
The Fe₃O₄ nanospheres were synthesized following a modified method reported previously.² Briefly, Fe(NO₃)₃·9H₂O (4 mmol) and NaAc (35 mmol) were dissolved in EG (40 mL), followed by the transfer of the mixture into a 70 mL Teflon-lined stainless-steel autoclave and kept at 200 °C for 8 h. For SiO₂ coating, 0.05 g of the as-prepared Fe₃O₄ NPs were dispersed in the mixture of ethanol (19 mL), deionized water (3 mL), ammonia solution (1 mL, 25~28%) and the solution of TEOS (0.01 mL) in ethanol (1 mL). After proceeding for 3 h, the black precipitate was harvested. The amorphous TiO₂ coating is the same as described above, leading to the formation of triplex Fe₃O₄@SiO₂@TiO₂ nanospheres.

Synthesis of Ag@Fe₃O₄@TiO₂ nanospheres:
The synthesis of Ag@Fe₃O₄@TiO₂ nanospheres without the SiO₂ interlayers was similar to the procedures above. Briefly, the as-prepared Ag@Fe₃O₄ (30 mg) was dispersed in IPA (27.97 mL), followed by the addition of DETA

*Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. Email: yxzhang@issp.ac.cn
²University of Science and Technology of China, Hefei 230026, P. R. China. Email: ligh@ustc.edu.cn
#Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia. Email: h.zhao@griffith.edu.cn
†Electronic supplementary information (ESI) available: Synthesis of TiO₂ microspheres; Synthesis of Fe₃O₄@SiO₂@TiO₂ nanospheres; Synthesis of Ag@Fe₃O₄@TiO₂ nanospheres; SEM images of the as-prepared products: (a) Ag@Fe₃O₄, (b) Ag@Fe₃O₄@SiO₂ and (c) Ag@Fe₃O₄@SiO₂@TiO₂ (Fig.S1); TEM images of the Ag@Fe₃O₄@SiO₂ synthesized with adding different amount of TEOS (Fig.S2); SEM, TEM and EDS spectrum of Fe₃O₄@SiO₂@TiO₂ NPs (Fig.S3); SEM and TEM images of as-prepared TiO₂ microspheres (Fig.S4); Nitrogen adsorption-desorption isotherm and pore size distribution plot for as-prepared Fe₃O₄@SiO₂@TiO₂ and TiO₂ microspheres (Fig.S5); Adsorption rate curve of MB in dark for Ag@Fe₃O₄@SiO₂@TiO₂ and P25 (10 mg) under Xe lamp illumination (Fig.S7).
(0.02 mL) and TIP (1.33 mL) under mechanical stirring. Afterward, the mixture was transferred to a 50mL Teflon-lined stainless-steel autoclave and kept at 200°C for 24 h. After being collected, washed and dried, the brown powder was obtained.

Fig. S1 SEM images of the as-prepared products: (a) Ag@Fe₃O₄, (b) Ag@Fe₃O₄@SiO₂ and (c) Ag@Fe₃O₄@SiO₂@TiO₂.
Fig. S2 TEM images of the Ag@Fe₃O₄@SiO₂ synthesized with adding amount of TEOS of 10 μL (a), 15 μL (b), 25 μL (c).
Fig. S3 (a) TEM images of Fe$_3$O$_4$@SiO$_2$@TiO$_2$ nanoparticles; (b) SEM images of Fe$_3$O$_4$@SiO$_2$@TiO$_2$ nanoparticles; (c) EDS spectrum of Fe$_3$O$_4$@SiO$_2$@TiO$_2$ nanoparticles.
Fig. S4 (a) TEM image of as-prepared TiO$_2$ microspheres; (b) SEM images of as-prepared TiO$_2$ microspheres.
Fig. S5 Nitrogen adsorption-desorption isotherm and pore size distribution plot for as-prepared (a) amorphous Fe₃O₄@SiO₂@TiO₂, (b) TiO₂ microspheres.

Fig. S6 Adsorption rate curve of MB in dark for Ag@Fe₃O₄@SiO₂@TiO₂ samples.
Fig. S7 Photocatalytic degradation of MB over unannealed Ag@Fe₃O₄@SiO₂@TiO₂ (3 mg) and P25 (10 mg) under Xe lamp illumination.

References
