Supplementary information

Cu-Ni nanoparticle decorated graphene based photodetector

Anil Kumara,b, Sudhir Husalea, A. K. Srivastavaa, P. K. Duttab, and Ajay Dhara*

aCSIR-Network of Institutes for Solar Energy, Division of Material Physics and Engineering, Council of Scientific & Industrial Research, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110012, India

bChemistry Department, National Institute of Technology, Allahabad 211004, India

*Corresponding author. Fax: +91 4560 9310. E-mail address: adhar@nplindia.org (Ajay Dhar)
Fig. 1S shows absorption curve of visible halogen light as such and after passing through quartz cuvette, DI water and Cu-Ni GrNHC solution in DI water respectively, the intensity was detected by a simple photon control spectrometer and the average change in the intensity was plotted. A rough estimation of absorption was calculated by the percentage difference in their observed intensities because of change in the intensity of 80%, which leads to a change in absorbance of 50%\(^1\). In our case, we have observed a 61% decrease in intensity when Cu-Ni GrNHC dispersed solution is used instead of DI water. Zhu et al, theoretically reported the enhancement light absorption of graphene using gold nanoparticle\(^2\). They optimized maximum 30.3% absorption controlled by gold nanostructured.

Fig. 1S Absorption of visible light (halogen lamp) without any medium (as such) and after passing through quartz, DI water and Cu-Ni GrNHC solution in DI water detected by the photon control spectrometer
Fig. 2S shows the rietveld analysis of Cu-Ni alloy having different Cu/Ni ratios of 1 and 3. The alloy was cured at 300°C. A dual phase was observed in Cu$_{0.75}$Ni$_{0.25}$ (Cu/Ni ratio 3) as indicated by the peak splitting. However, at Cu/Ni ratio 1 (Cu$_{0.5}$Ni$_{0.5}$) only single phase has been observed, which is an evidence in the favor of the maximum solubility of Cu and Ni at this ratio3.

Fig. 2S : Shows rietveld analysis of X-ray diffraction pattern of Cu$_{1-x}$Ni$_x$ alloy synthesized by electroless techniques and 300°C HTT (A)x = 0.5 and (B) x = 0.25