Supporting Information

Effect of Fullerenol Surface Chemistry on Nanoparticle Binding-induced Protein Misfolding

Slaven Radic1,*, Praveen Nedumpully-Govindan1,2,*, Ran Chen1, Emppu Salonen2, Jared M. Brown3, Pu Chun Ke1, and Feng Ding1

1Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
2Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
3Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA

*These authors contributed equally

Address correspondence to: fding@clemson.edu

Figure S1. The binding sites of C\textsubscript{60}(OH)\textsubscript{20} fullerenol on ubiquitin as predicted by docking simulations. The residues that make direct contact with ubiquitin include Phe45, Asn60, Gln 62 and Ser65 at site 1 (A), and Leu71, Leu73, Gly75 and Gly76 at site 2 (B), which are highlighted by depicting in stick representation. The C\textsubscript{60} fullerene bind predominantly to site 1.
Figure S2. Stern-Volmer plot of fluorescence quenching of ubiquitin in the presence of fullerene $C_{60}(OH)_{20}$.

\[\frac{I_0}{I} = 6.54 \times 10^4 \times C + 1.15 \]

\[R^2 = 0.98 \]
Figure S3. Isothermal titration calorimetry of $C_{60}(OH)_{20}$ fullerenol into ubiquitin.
Figure S4. Representative RMSD plots of ubiquitin without any nanoparticles from DMD simulations. The three trajectories (A-C) are taken from three independent simulations.
Figure S5. Protein heavy atom RMSD fluctuations in MD simulations in the cases of ubiquitin-alone (black), ubiquitin with C$_{60}$ fullerene (red) and ubiquitin with C$_{60}$(OH)$_{20}$ fullerenol (green).
Figure S6. Circular dichroism spectra of ubiquitin and ubiquitin-fullerenol solutions.