Supporting Information

Synthesis of few-layer MoS$_2$ nanosheet-coated electrospun SnO$_2$ nanotube heterostructures for enhanced hydrogen evolution reaction

Yunpeng Huang a, Yue-E Miao a, Longsheng Zhang a, Weng Weei Tjiu b, Jisheng Pan b, Tianxi Liu **

a State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China

b Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore

* To whom correspondence should be addressed. E-mail: txliu@fudan.edu.cn; Tel: +86-21-55664197; Fax: +86-21-65640293.
Fig. S1 FESEM images of SnO$_2$ nanotubes synthesized from SnCl$_2$/PVP precursors with SnCl$_2$/PVP mass ratios of 0.3/1.2 g/g (A) and 0.7/1.2 g/g (B).
Fig. S2 EDX mapping of MoS$_2$/SnO$_2$-6 hybrid nanotubes.
Fig. S3 FESEM images of (A) pure MoS$_2$ nanospheres without SnO$_2$ nanotubes as growing template and (B) mixture of MoS$_2$ nanosphere and SnO$_2$ nanotubes when the solvent of DMF was replaced by H$_2$O. Both products were prepared under the same conditions as that of MoS$_2$/SnO$_2$ hybrid.