Supporting Information

Controllable Nd$_2$Fe$_{14}$B/α-Fe Nanocomposites: Chemical Synthesis and Magnetic Properties

Lianqing Yu$^{a, b}$, Ce Yanga, and Yanglong Hou$^{a, *}$

aDepartment of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.

bCollege of Science, China University of Petroleum, Qingdao 266580, China

Figure S1. The size distribution histograms of 5 nm α-FeNPs

Figure S2. SEM images of Nd$_2$Fe$_{14}$B/α-Fe nanocomposite powder with total Nd/Fe ratio of 2.6/10. EDS analysis shows the molar ratio of Nd to Fe=1.42:10
Figure S3 α-Fe NPs with size of 10nm prepared by Fe(CO)$_5$ a) SEM, b) size distribution, c) HRTEM of the corresponding nanocomposite.
Figure S4. TEM images of Nd-Fe-B-oxide/\(\alpha\)-Fe precursor with total Nd/Fe ratio of 1.3/10.

Figure S5. XRD patterns of Nd\(_2\)Fe\(_{14}\)B/\(\alpha\)-Fe nanocomposites synthesized from Nd-Fe-B-oxide/\(\alpha\)-Fe precursor with total Nd/Fe ratio of 1.3/10. The nanocomposites can be indexed as a tetragonal structure Nd\(_2\)Fe\(_{14}\)B phase (JCPDS No. 36-1296) and \(\alpha\)-Fe phase (JCPDS No. 06-0696).
Figure S6. XRD patterns of Nd$_2$Fe$_{14}$B/α-Fe nanocomposites synthesized from Nd-Fe-B-oxide/α-Fe precursor with total Nd/Fe ratio of 2.6/10 under reduction & diffusion process of different temperature and time. The nanocomposites can be indexed as a tetragonal structure Nd$_2$Fe$_{14}$B phase (JCPDS No. 36-1296) and α-Fe phase (JCPDS No. 06-0696).