Controllable synthesis of CeO$_2$ nanospheres with different hollowness and size induced by copper doping

Wei Liu, Xiufang Liu, Lijun Feng, Jinxin Guo, Anran Xie, Jingcai Zhang, Shuping Wang, and Yanzhao Yang

*Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China. Fax: +86-531-88564464; Tel: +86-531-88362988; E-mail: yzhyang@sdu.edu.cn.

Fig. S1 The TEM images of the Cu$^{2+}$ doped CeO$_2$ (a-c): P$_2$, P$_3$ and P$_6$.

Fig. S2 EDS spectrum of the Cu$^{2+}$ doped ceria sample.
Fig. S3 The HRTEM images about lattice fringes of the Cu$^{2+}$ doped CeO$_2$: (a, b) P$_3$; (c, d) P$_4$.

Fig. S4 (a) The corresponding XPS survey spectrum of nanospheres: P$_1$ and P$_4$; (b) Ce 3d; (c) O 1s, and (d) Cu 2p. (a), (b) and (c) are P$_1$ and P$_4$ curves, respectively.
Fig. S5 XRD pattern of P$_3$ obtained at different solvothermal time illustrated as (a) 1 h, (b) 2 h, (c) 4 h, (d) 8 h.

Fig.S6 The TEM images of (a) the P$_1$ sample at 36 h and (b) the P$_4$ sample at 2h.
Fig. S7 N_2 adsorption - desorption isotherms of the pure and Cu$^{2+}$ doped CeO$_2$: (a) P_1, (b) P_2, (c) P_3, (d) P_4, (e) P_5 and (f) P_6. Insets are the corresponding BJH pore size distribution curves.