Electronic Supplementary Information for:
Dynamics and polarization of superparamagnetic chiral nanomotors in a rotating magnetic field

Konstantin I. Morozov and Alexander M. Leshansky*

Department of Chemical Engineering and Russel Berrie Nanotechnology Institute (RBNI),
Technion – Israel Institute of Technology, Haifa 32000, Israel

(Dated: September 2, 2014)

* lisha@tx.technion.ac.il
I. Rotation matrix

We use the definition of the three Euler angles φ, θ and ψ following Ref. [1]. The components of any vector \mathbf{W} in the body-fixed coordinate system (BCS) and in the laboratory coordinate system (LCS) are determined from the relation $\mathbf{W}^{BCS} = \mathbf{R} \cdot \mathbf{W}$, where \mathbf{R} is the rotation matrix. The rotation matrix is expressed explicitly via the Euler angles [2]

$$\mathbf{R} = \begin{pmatrix}
 c_\varphi c_\psi & s_\varphi s_\psi c_\theta & s_\varphi c_\psi c_\theta & s_\psi s_\theta \\
 -c_\varphi s_\psi & s_\varphi c_\psi c_\theta & -s_\varphi c_\psi & c_\varphi c_\psi c_\theta & c_\psi s_\theta \\
 s_\varphi s_\theta & -c_\varphi s_\theta & c_\theta & c_\varphi c_\theta & c_\psi s_\theta
\end{pmatrix},$$

where we use the compact notation, $s_\psi = \sin \psi$, $c_\theta = \cos \theta$, etc.

II. Approximate rotational viscous resistance coefficients of a helix

We approximate the rotational viscous resistance coefficients of a helical propeller by the corresponding values for a prolate spheroid approximating the helix. Let a and b be, correspondingly, the longitudinal (along the symmetry axis) and transversal semi-axes of the spheroid. The respective viscous resistances due to rotation about the symmetry axis and in perpendicular direction read [3]

$$\kappa_\parallel = 2\eta V n_\parallel^{-1}, \quad \kappa_\perp = 2\eta V \frac{a^2 + b^2}{a^2 n_\parallel + b^2 n_\perp},$$

(S1)

where η is the dynamic viscosity of the liquid, V is the spheroid volume, n_\parallel and $n_\perp = (1 - n_\parallel)/2$ are the depolarizing factors of the spheroid. For the prolate spheroid with $a > b$ and eccentricity $e = \sqrt{1 - b^2/a^2}$ the depolarizing factor along the symmetry axis reads [4]

$$n_\parallel = \frac{1 - e^2}{e^3} \left(\frac{1}{2} \ln \frac{1 + e}{1 - e} - e \right).$$

(S2)

III. Particle-based numerical algorithm

The numerical procedure used to compute the various components of the viscous resistance tensor is based on multipole expansion scheme [5]. The filament is constructed from nearly touching N rigid spheres (“shish-kebab” filament) having the same radius $r = 1$. The no-slip condition at the surface of all spheres is enforced rigorously via the use of direct
transformation between solid spherical harmonics centered at origins of different spheres. The method yields a system of $O(N L^2)$ linear equations for the expansion coefficients and the accuracy of calculations is controlled by the number of spherical harmonics (i.e. truncation level), L, retained in the series. This approach has been applied before for modeling low-Reynolds-number swimmers, e.g., rotating helix [6, 7] and undulating filament [8].

The spheres composing the helical filament are partitioned along the backbone of the filament $X(s)$ (see Eq. (21) and Fig. S1) so that the distance between centers of neighboring spheres is set to $2.02r$. The motion of the ith sphere composing a helix can be decomposed into translation U_i and rotation ω_i about its center, as $V_i = U_i + \omega_i \times r_i$ with r_i being the radius vector with origin at the center of ith sphere. For any prescribed rigid-body-motion of the helix, $\{U_i, \omega_i\}$ are determined uniquely. For instance, for computing the components of the resistance tensor, such as $\xi_{\parallel}, \kappa_{\parallel}$ and B_{\parallel}, associated with translation U and rotation ω about the x_3-axis, one has $\omega_i = e_3\omega$ and $U_i = U e_3 + \omega e_3 \times R_i$, where R_i is a position vector to the ith sphere center.

FIG. S1. Illustration of particle-based “shish-kebab” 2-turn helix approximating the regular helix with circular cross section of radius $r = 1$ (transparent blue) with helical radius $R = 2.5$ and pitch angle $\Theta = 65^\circ$.

3
IV. Demagnetizing factors of infinitely long elliptic cylinder

The demagnetizing factor N of infinitely long cylinder with an elliptic cross-section with corresponding semi-axes \hat{a} and \hat{b} was reported in Ref. [9]:

$$N = (2\pi)^{-1} \left[4 \arctan \frac{\hat{a}}{\hat{b}} + \frac{2\hat{b}}{\hat{a}} \ln \frac{\hat{b}}{\hat{a}} + \left(\frac{\hat{a}}{\hat{b}} - \frac{\hat{b}}{\hat{a}} \right) \ln \left(1 + \frac{\hat{b}^2}{\hat{a}^2} \right) \right].$$

At $\hat{a} > \hat{b}$ it determines the demagnetization factor N_1 along the short axis. The demagnetizing factor N_2 can be found either by the permutation $\hat{a} \leftrightarrow \hat{b}$ or from the equality $N_1 + N_2 = 1$.

For the regular helix with circular cross-section $N_1 = N_2 = 1/2$.