Supplementary Materials

Conduction Control at Ferroic Domain Walls via External Stimuli

¹ Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
² Institute of Electronics Engineering, National Tsing Hua University, HsinChu, 300, Taiwan
³ Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
⁴ Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
⁵ Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062, China
⁶ ThinTech Materials Technology Co., Ltd., Kaohsiung, 82151, Taiwan

* These authors contributed equally in this work.

Corresponding Author: Prof. Ying-Hao Chu
Email: yhc@nctu.edu.tw
Address: Room 709, Engineering Building VI, 1001 University Road, Hsinchu, 30010, Taiwan
Phone: +1-510-501-9307
The conduction mechanism of the 90° domain walls is explored by executing the temperature dependent measurement of charge transport. Domain wall currents measured at various temperatures and bias voltages are shown in Fig. S1(a), where two different transport regimes, depending on the temperature, are characterized. At temperature above 190 K, current scales exponentially with the increase of temperature at various biases (except $V_{sd} = 0$ V). Further analysis and data fitting (Fig. S1(b)) show that transport in this regime follows the thermal activation model with activation energy of ~0.23 eV. It is noticed that this extracted activation energy is in close agreement with that of the oxygen vacancies extracted in BiFeO$_3$, as reported in earlier studies using the scanning probe microscope technique and magnetotransports1,2.

Fig. S1. Temperature dependent study of 90° domain walls. (a) Current-temperature curves as a function of voltage bias, where the characterized thermal activated regime is shown in the pink rectangle. (b) A blowup fitting of the data within high temperature regime (> 190 K), where the temperature axis has been set as 1/T in order to illustrate the exponential fits (red lines) of the current curves.
Reference
