Electronic Supplementary Information

Ag-nanoparticles-decorated ZnO Porous-nanosheets
Grafted on Carbon Fiber Cloth as Effective SERS Substrates

Zhiwei Wang, † Guowen Meng, †,‡, ‡ Zhulin Huang, † Zhongbo Li, † Qitao Zhou †

†Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China

‡University of Science and Technology of China, Hefei, 230026, China

*To whom correspondence should be addressed,

Tel: (86) 0551-65592749, Fax: (86) 0551-65591434, E-mail: gwmeng@issp.ac.cn.

The Supporting Information includes:

Part S1. Characterization of ZnO-seeds@CFC.
Part S2. Lattice-resolved TEM image of ZnO-mesoporous-NS.
Part S3. XRD patterns of ZnO-mesoporous-NSs@CFC and bare CFC.
Part S4. Adsorption capacity of different substrates.
Part S5. The photos of each stage.
Part S6. EDS characterization of Ag-NPs@ZnO-mesoporous-NSs@CFC.
Part S7. Lattice-resolved TEM image of Ag-NPs@ZnO-mesoporous-NS.
Part S8. UV-vis spectra.
Part S9. The enhancement contribution of ZnO.
Part S10. Calculation of the average enhancement factor (EF).
Part S11. SERS-signal uniformity of Ag-NPs@ZnO-mesoporous-NSs@CFC.
Part S12. Raman spectrum of CFC.
Part S1. Characterization of ZnO-seeds@CFC.

Fig. S1. (a) Typical SEM images of ZnO-seeds@CFC; (b) Energy dispersive X-ray spectrum (EDS) performed on the ZnO-seeds@CFC.

Part S2. Lattice-resolved TEM image of ZnO-mesoporous-NS.

Fig. S2. Lattice-resolved TEM image of ZnO-mesoporous-NS.
Part S3. XRD patterns of ZnO-mesoporous-NSs@CFC and bare CFC.

![XRD patterns](image1)

Fig. S3. XRD patterns of I: ZnO-mesoporous-NSs@CFC; II: bare CFC.

Part S4. Adsorption capacity of different substrates.

As ZnO seeds have completely covered on the surface of CFC, it indeed formed a solid and nonporous ZnO film on the surface of CFC. Therefore ZnO-seeds@CFC were used as control experimental examples to examine the impact of porous structure. The same size of CFC, ZnO-seeds@CFC, ZnO-mesoporous-NSs@CFC substrates were put into same volume of 10^{-5} M R6G solution for 12 hours respectively and then their remnant concentration were examined through UV-vis spectroscopy. Fig. S4 shows that the absorbance of the R6G solution decreased significantly with ZnO-mesoporous-NSs@CFC dipped inside, indicating that ZnO-NSs@CFC with porous structure have the highest adsorption capacity.

Fig. S4. UV-vis spectra of I: original 10^{-5} M R6G solution; II: R6G solution with CFC; III: R6G solution with ZnO-seeds@CFC; IV: R6G solution with ZnO-mesoporous-NSs@CFC.
Part S5. The photos of each stage.

Fig. S5. The photo of (a) black CFC; (b) light-blue ZnO-seeds@CFC; (c) white ZnO-mesoporous-NSs@CFC; (d) gray Ag-NPs@ZnO-mesoporous-NSs@CFC.

Part S6. EDS characterization of Ag-NPs@ZnO-mesoporous-NSs@CFC.

Fig. S6. EDS performed on the optimal Ag-NPs@ZnO-mesoporous-NSs@CFC.
Part S7. Lattice-resolved TEM image of Ag-NPs@ZnO-mesoporous-NS.

Fig. S7. Lattice-resolved TEM image of Ag-NPs@ZnO-mesoporous-NS.

Part S8. UV-vis spectra.

Fig. S8. UV-vis spectra of I: The difference spectrum of Ag-NPs@ZnO-mesoporous-NSs@CFC and ZnO-mesoporous-NSs@CFC; II: Ag-NPs@ZnO-mesoporous-NSs@CFC; III: ZnO-mesoporous-NSs@CFC.
Part S9. The enhancement contribution of ZnO.

To evaluate the existence of chemical enhancements from ZnO, the SERS spectra of p-ATP with different concentrations adsorbed on the ZnO-mesoporous-NSs@CFC are shown in Fig. S9. For 10^{-3} M p-ATP, four fingerprint peaks of p-ATP at 1085 cm^{-1}, 1143 cm^{-1}, 1456 cm^{-1} and 1586 cm^{-1} can be clear seen in Fig. S9(a) curve I. While for 10^{-4} M p-ATP, the fingerprint peaks of p-ATP can still be distinguished, but not so obvious, as shown in Fig. S9(a) curve II. So we further design some indirect experiments to examine its existence according to a previous work\(^1\). In detail, CFC, ZnO-seeds@CFC, and Zn\(_4\)(CO\(_3\))(OH)\(_6\)·H\(_2\)O-NSs@CFC with the same Ag sputtering durations were used as experimental examples. Their SERS-activity to 10^{-4} M p-ATP are shown in Fig. S9(b). It is clear that Raman signal intensities of p-ATP adsorbed on the surface of Ag-NPs@ZnO-mesoporous-NSs@CFC are the largest. Although Raman signal of 10^{-4} M p-ATP adsorbed on pure ZnO-mesoporous-NSs@CFC is weak, as the Zn\(_4\)(CO\(_3\))(OH)\(_6\)·H\(_2\)O-NSs have similar sheet-like structures with that of ZnO-mesoporous-NSs, the larger SERS-activity of Ag-NPs@ZnO-mesoporous-NSs@CFC than that of Ag-NPs@Zn\(_4\)(CO\(_3\))(OH)\(_6\)·H\(_2\)O-NSs@CFC should be related to the contribution of ZnO.

Fig. S9. (a) SERS spectra of p-ATP with different concentrations adsorbed on the ZnO-mesoporous-NSs@CFC. I: 10^{-3} M p-ATP; II 10^{-4} M p-ATP. (b) SERS spectra of 10^{-4} M p-ATP by using I: Ag-NPs@ZnO-mesoporous-NSs@CFC; II: Ag-NPs@Zn\(_4\)(CO\(_3\))(OH)\(_6\)·H\(_2\)O-NSs@CFC; III: Ag-NPs@ZnO-seeds@CFC; IV: Ag-NPs@CFC.
Part S10. Calculation of the average enhancement factor (EF).

The EF can be calculated by

\[EF = \frac{I_{\text{SERS}} / N_{\text{SERS}}}{I_{\text{Nor}} / N_{\text{Nor}}} \]

Where \(I_{\text{SERS}} \) and \(I_{\text{Nor}} \) represent the intensity of the 1600 cm\(^{-1}\) band in the Raman spectrum of p-ATP and normal Raman spectrum, under the same experimental conditions (laser wavelength, laser power, microscope objective/lenses, accumulation time), respectively. \(N_{\text{SERS}} \) and \(N_{\text{Nor}} \) represent the corresponding number of molecules in the focused incident laser spot. Herein, for SERS experiment, a certain volume \((V_{\text{SERS}}) \) and concentration \((C_{\text{SERS}}) \) p-ATP ethanol solution was dispersed to an area of \(S_{\text{SERS}} \) at the as-fabricated substrate. Similarly, for normal Raman experiment, a certain volume \((V_{\text{Nor}}) \) and concentration \((C_{\text{Nor}}) \) p-ATP ethanol solution was dispersed to an area of \(S_{\text{Nor}} \) at a clean glass substrate. Both the substrates were dried in air. Thus the foregoing equation can be rewritten as follows:

\[EF = \frac{I_{\text{SERS}}}{I_{\text{Nor}}} \cdot \frac{S_{\text{SERS}} V_{\text{Nor}} C_{\text{Nor}}}{S_{\text{Nor}} V_{\text{SERS}} C_{\text{SERS}}} \]

In our experiments, 70 µL 10\(^{-3}\) M p-ATP ethanol solution was dispersed to an area of about 50 mm\(^2\) on a glass substrate. 40 µL 10\(^{-9}\) M p-ATP ethanol solution was dispersed to an area of about 60 mm\(^2\) for the Ag-NPs@ZnO-mesoporous-NSs@CFC and 40 µL 10\(^{-7}\) M p-ATP ethanol solution was dispersed to an area of about 70 mm\(^2\) for the Ag-NPs@ZnO-seeds@CFC. Fig. S10(a) and S10(b) show the Raman spectrum of p-ATP from the above-mentioned substrates. For the band at 1600 cm\(^{-1}\), \(I_{\text{SERS}}/I_{\text{Nor}} \) is about 2.66 and 1.66. Hence the average enhancement factor for Ag-
NPs@ZnO-mesoporous-NSs@CFC and Ag-NPs@ZnO-seeds@CFC are calculated to be 5.58×10^6 and 4.06×10^4.

Fig. S10. (a) I: Raman spectrum of p-ATP obtained using dried 70 µL 10^{-3} M PATP ethanol solution dispersed on 50 mm2 glass substrate. II: SERS spectrum of 40 µL 10^{-9} M p-ATP ethanol solution dispersed on 60 mm2 Ag-NPs@ZnO-mesoporous-NSs@CFC (b) I: Raman spectrum of p-ATP obtained using dried 70 µL 10^{-3} M PATP ethanol solution dispersed on 50 mm2 glass substrate. II: SERS spectrum of 40 µL 10^{-7} M p-ATP ethanol solution dispersed on 70 mm2 Ag-NPs@ZnO-seeds@CFC.

Part S11. SERS-signal uniformity of Ag-NPs@ZnO-mesoporous-NSs@CFC.

Fig. S11. SERS spectra of R6G obtained from ten random carbon fibers of as-prepared optimal SERS substrate. Data acquisition time 5 s, [R6G] = 1.0×10^{-7} M.
Part S12. Raman spectrum of CFC.

Fig. S12. Raman spectrum of CFC.

References