Solution processed n-In_2O_3 nanostructures for organic-inorganic hybrid p-n junctions

G. Mohan Kumara*, A. Madhan Kumarb, P. Ilanchezhiyana and T. W. Kanga*

aQuantum-Functional Semiconductor Research Centre, Dongguk University, Seoul, Republic of Korea.
bCenter of Research Excellence in Corrosion, King Fahd University of Petroleum & Minerals, Kingdom of Saudi Arabia

Fax: +82-2-2278-4519; Tel: +82-10-4896-1777
Email: selvi1382@gmail.com, twkang@dongguk.edu

Experiment:

Preparation of In_2O_3 colloidal dispersion: 50 mg of the prepared In_2O_3 nanoparticulates were dispersed in a 20 ml mixture of ethanol and chloroform (1:1). The dispersant was then sonicated for a period of 30 min and aged for 6-12 h. Such treatments were carried out to ensure the separation of larger particulates (as a result of decantation) from the colloidal media. Two-three cycles were carried out to procure a highly dispersed transparent colloidal dispersion. The same was then used for drop casting the interfacial layers.

![Figure S1: Highly dispersed/transparent In_2O_3 colloidal dispersion.](image)
Hydrothermal synthesis of ZnO nanowires: The ITO substrates were pre-cleaned using ethanol and acetone initially. The seed layers were prepared by immersing the ITO substrates in a solution made of zinc acetate in ethanol, under stirring for a period of 15 min at 65-70°C. The substrates were then dried in a dry stream of nitrogen gas and annealed at 350°C for 30 min. 3-5 cycles were repeated to obtain uniform deposition of ZnO seed layers. The prepared seed layers were then subjected to hydrothermal treatment in a solution made of 25 mM zinc nitrate and hexamethylene tetramine, respectively. The growth conditions for the nanowires involved 120°C/3-9 h. The final products were annealed at 450°C for 30 min.

Establishing In$_2$O$_3$ buffer layers: The buffer layers were established on the ZnO NW’s via drop casting the colloidal solution used for the fabrication of In$_2$O$_3$ working electrodes. The electrodes were heat treated at 90°C in between each cycles (two-three) for a period of 10 min each and finally annealed at 450°C for 30 min.