Supplementary Information for

Ultrafast, superhigh sensitivity visible-blind UV detector and optical logic gates based on nonpolar a-axial GaN nanowire

Xingfu Wang\(^a\), Yong Zhang\(^a\), Xinman Chen\(^a\), Miao He\(^a\), Chao Liu\(^a\), Yian Yin\(^a\), Xianshao Zou\(^a\), and Shuti Li\(^a\)

\(^a\)Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou, 510631, People’s Republic of China

\(^*\)E-mail: lishuti@sceu.edu.cn.

Index

Figures S1-S3

Supplementary Discussion: the transport characterization of MSM GaN NW PD.
Figure S1

Figure S1. (a) EDS data of a single GaN NW grown on patterned Si; (b) the electron diffraction data with the electron beam perpendicular to the axis of a typical GaN NW.
Figure S2

Figure S2a. typical linear scale I-V characteristics of the fabricated GaN NW PD both in the dark (black curve) and upon 325 nm UV light illumination with power density of 1 mW/cm2 (red curve).

Figure S2b. light density dependent photocurrent curve at a voltage of 1 V
Figure S2c and d. the light density dependent spectra responsivity (R_λ) at a voltage of 1V (c). the light density dependent external quantum efficiency (EQE) at a voltage of 1 V (d).
Figure S2e. Time dependent photocurrent response of the GaN PD device in the light density of 50, 300 and 1100 μw/cm2 when the UV light turned on and off with a period of \sim10 s (at a bias of 1 V).

Figure S3. Schematic diagram of polar (c-axis) and non-polar (m and a axis) crystal orientation in wurtzite structure GaN.
Supplementary Discussion:

Figure S4. The energy-band diagram for the Schottky barrier that is formed at the metal-GaN interface.

The back-to-back MSM GaN NW PD can be regarded as a nanowire connected with a forward-biased SB diode and a reverse-biased SB diode in series. **Fig. 3d** in the main text shows the energy-band diagram for the GaN NW PD device. The reverse biased SB height (Φ_R) is much higher than that of forward biased (Φ_F). The reverse biased Schottky contact area is the bottleneck for the current transport in the device. **Fig.S3** shows the energy-band diagram for the Schottky barrier that is formed at the metal-GaN interface. The original SB height Φ_{SB} is determined by the work-function difference between the metal and GaN, and the interface states. As for the forward-biased SB diode, the current passing through this barrier can be described by the thermionic-emission (TE) theory. The total current density is given by: $^{1, 2}$
\[J_n = \left[A'T^2 \exp\left(-\frac{q\phi_{SB}}{kT} \right) \right] \left[\exp\left(\frac{qV}{kT} \right) - 1 \right] \]

\[= J_{TE} \exp\left(\frac{qV}{kT} \right) - 1 \]

Therefore,

\[I_{TE} = S A'T^2 \exp\left(-\frac{q\phi_{SB}}{kT} \right) \] (2)

and

\[A' = \frac{4\pi q m^* k^2}{\hbar^3} \] (3)

in which \(S \) is the area of the Schottky contact, \(A' \) is the effective Richardson constant, \(T \) is the temperature, \(q \) is the unit electronic charge, \(k \) is the Boltzmann constant, and \(V \) is the applied voltage. And for the reverse-biased SB diode, the current can be described by the thermionic-emission-diffusion theory (for \(V \sim 3kT/q \sim 77 \) mV) as:\(^1,^2\)

\[I_{TED} = S A''T^2 \exp\left(-\frac{q\phi_{SB}}{kT} \right) \exp\left(\frac{1}{4} q^2 N_D (V + V_{bi} - kT/q)^2 \right) \frac{\varepsilon_s^3}{kT} \] (4)

and

\[V_{bi} = \Phi_{SB} - (E_c - E_F) \] (5)

in which \(A'' \) is the effective Richardson constant, \(N_D \) is the donor impurity density, \(V_{bi} \) is the built-in potential, and \(\varepsilon_s \) is the permittivity of GaN. The depletion layer formed at the SB area has a width of:
\[W_D = \frac{2\varepsilon_S}{qN_D} \left(V_{bi} - V - \frac{kT}{q} \right) \] (6)

Considering Equation 2, 4, and 6 we can conclude that the current passing through the Schottky contact is very sensitive to the Schottky barrier height and barrier width, especially under reverse-bias conditions. Therefore, the photocurrent transport characteristics of the M-S-M structure-based PD devices are mainly dictated by the reverse biased Schottky diode.

Reference