Supporting Information

The Effect of Ce Ion Substituted OMS-2 Nanostructure in Catalytic Activity for Benzene Oxidation

Jingtao Hou,† Yuanzhi Li, *,† Mingyang Mao, † Xiujian Zhao, † Yuanzheng Yue †,‡
† State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan 430070, P. R. China.
‡ Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Room D122, Sohngaardholmsvej 57, Aalborg, Denmark.

Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2014
Figure S1. The N$_2$ adsorption-desorption isotherm of the catalysts.
Figure S2. XRD diffraction pattern of the fresh CM-120 sample (a), the CM-120 sample calcined at 500 °C for 10h (b), and the CM-120 sample after 80 h catalytic reaction (c).
Figure S3. Ce3d XPS spectra of the samples.

The valence state of Ce ions in the samples is characterized by analyzing their Ce3d XPS spectra.51-3 Six peaks labeled as v, v', v'' (3d\textsubscript{5/2}), u, u', u''(3d\textsubscript{3/2}) referring to three pairs of spin-orbit doublets can be identified and they are characteristic of Ce4+ 3d final states (blue), while four peaks (noted as U\textsubscript{0}, U\textsubscript{0}', U\textsubscript{1}, U\textsubscript{1}') corresponding to Ce3+ 3d states (red).51-3 The atomic ratio of Ce3+/(Ce3+ + Ce4+) in CM-120, CM-180, and pure CeO\textsubscript{2} is estimated by the devolution of their Ce3d XPS spectra to be 0.31, 0.16, 0.13(Table 1), respectively, indicating most of Ce ions exist in the form of Ce4+.

References:

