Supplementary Information

Highly reproducible planar Sb$_2$S$_3$-sensitized solar cells based on atomic layer deposition

Dae-Hwan Kim, Sang-Ju Lee, Mi Sun Park, Jin-Kyu Kang, Jin-Hyuk Heo, Sang Hyuk Im, Shi-Joon Sung

*Energy Research Division, Daegu Gyeongbuk Institute of Science & Technology
333 Techno jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Republic of Korea

*Department of Chemical Engineering, Kyung Hee University
1732 Deogyeong-daero, Giheung-gu, Yongin-si, Geyonggi-do 446-701, Republic of Korea
Fig. S1 Cross-sectional high-resolution SEM image of full cell with ALD 1600 layer: FTO/Bl-TiO$_2$/Sb$_2$S$_3$-ALD1600/P3HT/Au.

Fig. S2 Photoluminescent (PL) quenching spectra of FTO/bl-TiO$_2$/Sb$_2$S$_3$-CBD/P3HT and FTO/bl-TiO$_2$/Sb$_2$S$_3$-ALD1600/P3HT sample (excitation = 650 nm-wavelength). The PL intensity of FTO/bl-TiO$_2$/Sb$_2$S$_3$-ALD1600/P3HT sample was more severely quenched than the FTO/bl-TiO$_2$/Sb$_2$S$_3$-CBD/P3HT sample. This might be attributed to the better charge injection from Sb$_2$S$_3$ into TiO$_2$ in ALD1600 sample because the pure Sb$_2$S$_3$ was formed by the ALD process and as a result, the traps might be significantly removed.
Fig. S3 Transmittance spectra of Sb$_2$S$_3$-ALD1600 and Sb$_2$S$_3$-CBD. The transmittance of Sb$_2$S$_3$-CBD sample was higher than Sb$_2$S$_3$-ALD1600 sample. This might be attributed to the low absorption of Sb$_2$S$_3$-CBD because the impurities were formed by the CBD process.

Fig. S4 (a) TEM-EDX of Sb$_2$S$_3$-ALD1600 and (b) Sb$_2$S$_3$-CBD. The Sb/S ratio of Sb$_2$S$_3$-ALD1600 was 0.77 (=43.73/56.27), but Sb$_2$S$_3$-CBD was near 1 (=49.34/50.66). Sb$_2$S$_3$-CBD sample have higher Sb/S ratio due to impurity.