Supporting Information

Plasmonic-enhanced Raman scattering of graphene on growth substrate and its application in SERS

Yuan Zhao, Guanxiong Chen, Yuanxin Du, Jin Xu, Shuilin Wu, Yan Qu and Yanwu Zhu

Department of Materials Science and Engineering & CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, China
Email: zhuyanwu@ustc.edu.cn

Wuxi Graphene Technologies Co., Ltd, 311 Yanxin Rd, Wuxi 214174, China & Jiangnan Graphene Research Institute, 6 Xiangyun Rd, Changzhou 213149, China

Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Hefei 230026, China
Calculation of enhancement factor

The SERS enhancement factors (EFs) were estimated by \(\text{EF} = \frac{I_{\text{SERS}}}{I_{\text{bulk}}} \times \frac{N_{\text{bulk}}}{N_{\text{SERS}}} \),\(^1\) where \(I_{\text{SERS}} \) is the peak intensity of the specific Raman band for the probe molecules with \(10^{-9} \) M on the SERS substrate, \(I_{\text{bulk}} \) is the intensity of the same Raman band from \(10^{-2} \) M analyte. \(N_{\text{SERS}} \) and \(N_{\text{bulk}} \) are the number of molecules contributing to \(I_{\text{SERS}} \) and \(I_{\text{bulk}} \). Here, \(1649 \text{ cm}^{-1} \) Raman peak of RhB and \(612 \text{ cm}^{-1} \) Raman peak of R6G are selected for EFs calculation. The SERS substrate containing analyte was 4 nm Au/analyte/graphene/Cu foils and the substrate for reference was analyte/graphene/Cu foils, respectively. For two substrates, the analytes were both deposited on the surface of graphene/Cu foils, thus the number of molecules contributing to Raman signals was only related to the concentration of the analyte and \(N_{\text{bulk}}/N_{\text{SERS}} = 10^7 \). For RhB, the peak intensities \(I_{\text{SERS}} \) and \(I_{\text{bulk}} \) at \(1649 \text{ cm}^{-1} \) were 645 (a.u) and 1255 (a.u). The EF for RhB is estimated to be \(\sim 5.14 \times 10^6 \). For R6G, the peak intensities \(I_{\text{SERS}} \) and \(I_{\text{bulk}} \) at \(612 \text{ cm}^{-1} \) were 452 (a.u) and 534 (a.u). The EF for R6G is calculated to be \(\sim 8.46 \times 10^6 \). In fact, the EFs should be higher than the values calculated as the Au nanoislands could cover a part of molecules and much less molecules contribute to the Raman intensity \(I_{\text{SERS}} \).

The effective diameter of Au nanoislands is estimated as the diameter of a circle surrounding the nanoisland. The average inter-island distance was 18.1 nm, 6.2 nm, 7.0 nm, 9.0 nm, 10.6 nm and 11.3 nm for 2 nm, 4 nm, 6 nm, 8 nm, 10 nm and 18 nm Au, respectively.
Supporting figures

Fig. S1 SEM images for (a) 2 nm, (b) 4 nm, (c) 6 nm, (d) 8 nm, (e) 10 nm and (f) 18 nm Au on graphene/Cu substrates, giving an effective diameter of (g) ~15.5 nm and a particle density of $828/\mu m^2$ for 2 nm Au, (h) ~24.2 nm and a particle density of $1071/\mu m^2$ for 4 nm Au, (i) ~32.7 nm and a particle density of $604/\mu m^2$ for 6 nm Au, (j) ~44.1 nm and a particle density of $357/\mu m^2$ for 8 nm Au, (k) ~55.6 nm and a particle density of $225/\mu m^2$ for 10 nm Au, (l) ~78.3 nm and a particle density of $127/\mu m^2$ for 18 nm Au, respectively. The scale bar in (a-f) is 500 nm.
Fig. S2 Simulated electric field intensity distribution of Au/graphene/Cu hybrid system at 1100 nm in the x-z plane for Au particle diameter d and period p to be (a) $d=70$ nm, $p=60$ nm and (b) $d=80$ nm, $p=60$ nm. The gray dot lines are 1 nm-thick graphene. The scale bar is 10 nm.

Fig. S3 The intensity of SERS signal at 1649 cm$^{-1}$ versus 11 different molecule concentration of RhB.
Fig. S4 (a) SERS spectra of R6G (4 nm Au/R6G/graphene/Cu) with six different molecular concentrations. * marks the G band of graphene. (b) The intensity of SERS signal at 612 cm\(^{-1}\) versus the concentration of R6G.

Fig. S5 Raman spectra of (a) RhB and (b) R6G on different substrates with different concentrations. Raman spectra of \(10^{-9}\) M in 4 nm Au/analyte/graphene/Cu structure (dark green lines) and \(10^{-2}\) M on graphene/Cu substrate (rose lines), respectively.
Fig. S6 The intensity of SERS signal versus the concentration of (a) Sudan III at 1345 cm$^{-1}$ and (b) Sudan IV at 1344 cm$^{-1}$.

Notes and references