Supplementary Information for

Layer Speciation and Electronic Structure Investigation of Freestanding Hexagonal Boron Nitride Nanosheets

Jian WangaS, Zhiqiang WangbS, Hyunjin Choc, Myung Jong Kimc, T.K. Shamb,d, Xuhui Sund,e,*

a Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
b Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
c Soft Innovative Materials Research Center, Korea Institute of Science and Technology, Wanju-gun, Jeollabuk-do 565-905, South Korea
d Soochow University-Western University Centre for Synchrotron Radiation Research
e Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, Jiangsu, 215123, China

SEqual contribution to this work
*Corresponding author: xhsun@suda.edu.cn

Contents (supplementary figures)

Fig. S1: Normalized STXM spatially-resolved XANES spectra of hBN nanosheets at the B and N K-edges.

Fig. S2: STXM spatially-resolved absolute optical density XANES spectra of hBN nanosheets at the C and O K-edges.
Fig. S1 Normalized STXM spatially-resolved XANES spectra of hBN nanosheets, (a) and (b) normalized XANES spectra at the B and N K-edge respectively from the selected regions of interest in Fig. 3 (a) in the main text with the normal incidence of the X-ray beam, (c) amplified spectral region from 191 to 197 eV of (a), all vertical dashed lines and letters in the spectra indicate the spectral regions of interest; (d) intensity ratio of σ^*/π^* for the first and the second σ^* features as a function of hBN nanosheet layers.
Fig. S2 STXM spatially-resolved absolute optical density XANES spectra of hBN nanosheets at (a) the C K-edge and (b) the O K-edge from the selected regions of interest in Fig. 3 (a) in the main text with the normal incidence of the X-ray beam.