Supporting Information for

A Novel Hollowed CoO-in-CoSnO$_3$ Nanostructure with Enhanced Lithium Storage Capabilities

Cao Guan*$_a$, Xianglin Lib, Hong Yuc, Lu Maoa, Lydia Helena Wongc, Qingyu Yanc, and John Wang*$_a$

[]Dr. C. Guan, Dr. L. Mao, Prof. J. Wang
Department of Materials Science and Engineering, National University of Singapore, 117574 Singapore.
Email: msegc@nus.edu.sg, msewangj@nus.edu.sg

Dr. X. L. Li
Energy Research Institute @ NTU, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, X-Frontier Block, Level 5, 637553 Singapore.

H. Yu, Prof. L. H. Wong, Prof. Q. Y. Yan
School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore.
Figure S1. SEM images of the Co$_2$(OH)$_2$CO$_3$@SnO$_2$ after thermal treatment at different temperatures of: (a)250, (b)300, (c)350, (d)400, (e)450, (f)550, (g)650, and (h)750°C.
Figure S2. XPS spectrum of CoOCoSnO$_3$@C with (b-d) showing the regions of Co 2p, O 1s and Sn 3d.

Figure S3. Cycling curve of solid core-shell structure by deposit ALD SnO$_2$ directly on CoO nanowire.
Figure S4. TEM images of (a) CoOOCsSnO₃@C and (b) CoOOCsSnO₃ after 100 cycles, showing the volume expansion and pulverization of the materials.