Supporting Information

High-Surface-Area Mesoporous TiO$_2$ Microspheres via One-Step Nanoparticle Self-Assembly for Enhanced Lithium-Ion Storage

Hsin-Yi Wanga, Jiazang Chena, Sunny Hyb, Linghui Yuc, Zhichuan Xuc and Bin Liu*a

aSchool of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
bDepartment of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, Republic of China.
cSchool of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798.
Email: liubin@ntu.edu.sg

Fig. S1 (a) TEM and (b) HRTEM images of as-prepared TiO$_2$ microspheres.

S1
Fig. S2 Digital photograph of (A) as-prepared TiO\textsubscript{2} microspheres, (B) 200 °C calcined TiO\textsubscript{2} microspheres, and (C) 400 °C calcined TiO\textsubscript{2} microspheres, dispersed in water.
Fig. S3 1st and 2nd charge-discharge curves of (a) 200 °C calcined TiO\textsubscript{2} microspheres and (b) 400 °C calcined TiO\textsubscript{2} microspheres.
Fig. S4 Digital photograph of TiO₂ microspheres synthesized from one-pot synthesis. In one typical synthesis process, 2 ml of titanium isopropoxide could produce 502.8 mg of TiO₂ microspheres (after calcination at 400 °C for 2 hours), and the product yield is as high as ~96.1%.
Fig. S5 TEM image of 400 °C calcined TiO$_2$ microspheres after 100 charge-discharge cycles.
Fig. S6 HRTEM images of 200 °C calcined TiO$_2$ microspheres after cycling for (a) 1 cycle and (b) 100 cycles, and 400 °C calcined TiO$_2$ microspheres after cycling for (c) 1 cycle and (d) 100 cycles. The interplanar distances are all 0.35 nm corresponding to the spacing between the (101) planes of tetragonal anatase.