Electronic Supplementary Information for

Porous hollow Co$_3$O$_4$ with rhombic dodecahedral structures for high-performance supercapacitors

Yi-Zhou Zhanga, Yang Wanga, Ye-Lei Xiea, Tao Chenga, Wen-Yong Laia,*, and Huan Pangb,*, and Wei Huanga*

a Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China

b College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, Henan, China.

*E-mail: iamwylai@njupt.edu.cn; huanpangchem@hotmail.com; iamwhuang@njupt.edu.cn

Calculation The specific capacitance of an electrode during galvanostatic charge/discharge can be calculated by the following equation:

$$C = \frac{i \cdot \Delta t}{m \cdot \Delta V}$$

Where m is the mass of Co$_3$O$_4$ (5 mg), ΔV is the range of charge/discharge (V), and i is the discharge current (A) applied for time Δt (s).
Fig. S1 XRD patterns of the as-prepared precursors.

Fig. S2. SEM images of as-prepared samples with different reaction time, a) 0.5 h, b) 8 h, c) 24 h, and d) 48 h. The scale bar= 1.0 μm
Fig. S3 TG curve of the as-prepared precursor.

Fig. S4 SAED patterns of the as-prepared Co$_3$O$_4$.
Fig. S5. The capacitive performance of the conductive carbon measured at the same condition as Co$_3$O$_4$.
Fig. S6 a) SEM image, and b) TEM image of Co$_3$O$_4$ samples after 6000 cycles.
Fig. S7. Electrochemical impedance spectroscopy (EIS) analysis of as-prepared electrodes before and after 6000 cycling test.
Fig. S8. Ragone plot regarding specific energy and power density parameters of the as-prepared electrode.