Supporting Information

Short-Range Ordered-Disordered Transition of NiOOH/Ni(OH)_2 Pair Induces Switchable Wettability

Ya-Huei Chang, a Nga Yu Hau,a Chang Liu,a Yu-Ting Huang,a Chien-Cheng Li,a Kaimin Shih,b Shien-Ping Feng*, a

Contents
(1) Supplementary Figures and Table

Figure S1. Plating profile of amorphous and nanoporous NiOOH.
Figure S2. Long-term stability and cycling test.
Figure S3. Roughness of FTO and stainless steel.
Figure S4. A photograph of shape deformation on rough SS before detachment, leading to the calculated adhesion force between the water droplet and Ni(OH)_2/SS of 33μN.
Figure S5. Conventional XRD of as-prepared film and its exposure to high EC for 1 hr, and to UVO_3 for 10 mins.
Figure S6. (a) Ordered Ni-LDH, (b) turbostratic disordered Ni(OH)_2 and (c) short-range disordered Ni(OH)_2 where the basal planes face the air at a certain angle.
Figure S7. A photograph of the smiling pattern with wet eyes and mouth on a dry face.
Figure S8. (a) Cathodic waves of cyclic voltammetry for nickel. The inset is a photograph of the nickel strips. (b) Gold nanoparticles suspended on the scaffolds of hydrophobic Ni(OH)_2 at -2V.

Table S1. Summary of the O 1s peak fitting results for the O2−, OH− and hydroscopic H_2O.

(2) Supplementary Videos
Video S2. The proof of good water-repellancy between the Ni(OH)_2/SS and the water roplet.
Video S3. The real-record of 2D microfluidic channels with optical microscopy.
Figure S1. Plating profile of amorphous and nanoporous NiOOH.

Figure S2. (a) Long-term stability of wetting state (NiOOH/FTO) and dewetting state ((Ni(OH)₂/FTO) stored at ambient atmosphere during 8 days. (b) Dewetting state (Ni(OH)₂ stored at ambient atmosphere after 3 months. (c) Cycling test upon environmental chamber and UV/ozone alternatively. (d) FE-SEM image of hydrophobic Ni(OH)₂ film with micro-collapse after thermally cycling test.
Figure S3. Roughness of FTO and stainless steel.

Figure S4. A photograph of shape deformation on rough SS before detachment, leading to the calculated adhesion force between the water droplet and Ni(OH)$_2$/SS of 33μN by balancing vertical forces, as shown in equation (S1).

\[
f = \pi R_x \sqrt{1 + \frac{R_x}{R_y}} - \rho V g
\]

where \(\gamma \) is surface tension of water, \(R_x \) and \(R_y \) are the principal radii of curvature. The last term represents the gravitational force acting on the lower part of the water droplet, where \(\rho \) and \(V \) are the density and volume of lower part of water droplet, and \(g \) is the gravitational acceleration.
Figure S5. Conventional XRD of as-prepared film and its exposure to high EC for 1 hr, and to UVO₃ for 10 mins.

Figure S6. (a) Ordered Ni-LDH, (b) turbostratic disordered Ni(OH)₂ and (c) short-range disordered Ni(OH)₂ where the basal planes face the air at a certain angle.
Table S1. Summary of the O 1s peak fitting results for the O^{2-}, OH^- and hydroscopic H_2O.

<table>
<thead>
<tr>
<th>Sample/Area</th>
<th>O^{2-}</th>
<th>OH^-</th>
<th>hydroscopic H_2O</th>
<th>O^2/OH^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-prepared</td>
<td>22,480</td>
<td>23,286</td>
<td>4,642</td>
<td>0.97</td>
</tr>
<tr>
<td>High EC</td>
<td>0</td>
<td>45,120</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UVO$_3$</td>
<td>11,273</td>
<td>35,344</td>
<td>5,532</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Figure S7. A photograph of the smiling pattern with wet eyes and mouth on a dry face.

Figure S8. (a) Cathodic waves of cyclic voltammetry for nickel. The inset is a photograph of the nickel strips. (b) Gold nanoparticles suspended on the scaffolds of hydrophobic Ni(OH)$_2$ at -2V.