## **Supporting Information**

## Decorating Graphene Nanosheets with Electron Accepting Pyridyl Phthalocyanines

Leonie Wibmer,<sup>a</sup> Leandro M. O. Lourenço,<sup>a,b\*</sup> Alexandra Roth,<sup>a</sup> Georgios Katsukis,<sup>a</sup> Maria G. P. M. S. Neves,<sup>b</sup> José A. S. Cavaleiro,<sup>b</sup> João P. C. Tomé,<sup>b\*</sup> Tomás Torres,<sup>c\*</sup> Dirk M. Guldi<sup>a\*</sup>

<sup>a</sup>Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany <sup>b</sup>QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal <sup>c</sup>Department of Organic Chemistry, Autonoma University of Madrid, Cantoblanco, 28049 Madrid, Spain



**Figure S1**: Emission time profiles of **1** (grey spectrum), **2** (red spectrum), and **3** (black spectrum) in DMF following 403 nm excitation wavelength.



**Figure S2:** Upper part – differential absorption spectra (visible and near infrared) obtained upon femtosecond pump probe experiments (387 nm) of **1** in DMF with addition of pyridine to ensure monomeric phthalocyanines with time delays between 0 and 6500.0 ps at room temperature – for time delays see figure legend. Lower part – differential absorption spectra (visible and near infrared)

obtained upon femtosecond pump probe experiments (387 nm) of **3** in DMF with addition of pyridine to ensure monomeric phthalocyanines with time delays between 0 and 6500.0 ps at room temperature – for time delays see figure legend.



**Figure S3**: Differential pulse voltammetry of **2** in DMF with 0.1 M tBAPF<sub>6</sub> as electrolyte. The potentials are given *vs* Ag-wire as quasi reference electrode.



**Figure S4**: Differential absorption spectrum (visible and near infrared) obtained upon spectroelectrochemical one electron reduction of **1** in DMF with a voltage of -0.6 V *vs* Ag-wire.



**Figure S5**: Differential absorption spectra (visible and near infrared) obtained upon spectroelectrochemical one electron (black spectrum) and two electron (red spectrum) reductions of **3** in DMF with voltages of -0.2 and -0.6 V *vs* Agwire, respectively.



**Figure S6**: Upper part – absorption spectrum of **2**. Lower part – absorption spectra of **G2** after 1<sup>st</sup> enrichment (black spectrum), 2<sup>nd</sup> enrichment (dark grey spectrum), 3<sup>rd</sup> enrichment (red spectrum), and 4<sup>th</sup> enrichment (light grey spectrum).



**Figure S7:** Upper part – fluorescence spectrum of **G2** before enrichment. Lower part - Fluorescence spectra of **G2** after 1<sup>st</sup> enrichment (black spectrum), 2<sup>rd</sup> enrichment (dark grey spectrum) – amplified by a factor of 5, 3<sup>rd</sup> enrichment (red spectrum) – amplified by a factor of 5, and 4<sup>th</sup> enrichment (light grey spectrum) – amplified by a factor of 5.



**Figure S8**: Upper part – differential absorption spectra (visible) obtained upon femtosecond pump probe experiments (387 nm) of **G1** in DMF with time delays between 0 and 13.8 ps at room temperature – for time delays see figure legend. Lower part – differential absorption spectra (near infrared) obtained upon femtosecond pump probe experiments (387 nm) of **G1** in DMF with time delays

between 0 and 13.8 ps at room temperature – for time delays see figure legend of upper part.



**Figure S9:** Upper part – differential absorption spectra (visible) obtained upon femtosecond pump probe experiments (387 nm) of **G3** in DMF with time delays between 0 and 13.8 ps at room temperature – for time delays see figure legend. Lower part – differential absorption spectra (near infrared) obtained upon femtosecond pump probe experiments (387 nm) of **G3** in DMF with time delays

between 0 and 13.8 ps at room temperature – for time delays see figure legend of upper part.