Supplementary Information for

Water-Assisted Production of Honeycomb-Like g-C$_3$N$_4$ with Ultralong Carrier Lifetime and Outstanding Photocatalytic Activity

Zhenyu Wang, a Wei Guan, b Yanjuan Sun, a Fan Dong, a,* Ying Zhou, c Wing-Kei Ho d

a Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing, China.
b Chongqing Key Laboratory of Environmental Materials and Remediation Technology, Chongqing University of Arts and Sciences, Chongqing, China.
c State Key Laboratory of Oil and Gas Reservoir and Exploitation, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, China.
d Department of Science and Environmental Studies, The Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Hong Kong.

* To whom correspondence should be addressed. E-mail: dfctbu@126.com. Tel.: +86-23-62769785-605; Fax: +86-23-62769785-605.
Fig. S1 XRD patterns of CN-1-10, CN-1-20 and CN-1-30 samples.

Fig. S2 FT-IR spectra of the obtained g-C$_3$N$_4$ products treated under different preparation times, CN-1 (a), CN-3 (b) and CN-5 (c).
Fig. S3 SEM image of CN-1 sample.

Fig. S4 SEM image of CN-3 sample.

Fig. S5 SEM image of CN-5 sample.
Fig. S6 TEM images of CN-1-10 (a, b), CN-1-30 (c, d)

Fig. S7 N₂ adsorption-desorption isotherms of the obtained g-C₃N₄ samples (a) and corresponding pore-size distribution curves (b).
Fig. S8 Enlarged view of the pore-size distribution curve of the CN-1 samples.

Fig. S9 \(\text{N}_2\) adsorption-desorption isotherms of CN-1-10, CN-1-20, CN-1-30 (a) and corresponding pore-size distribution curves (b).
Fig. S10 UV-vis DRS of CN-1-10, CN-1-20 and CN-1-30 samples.

Fig. S11 Visible light photocatalytic activities of the CN-1-10, CN-1-20, CN-1-30 for removal of NO in air.
Fig. S12 The diagram illustrating the differences between the obtained g-C₃N₄ samples on light reflection.