Supplementary Information

Direct Synthesis of Pure Single-Crystalline Magnéli Phase Ti$_8$O$_{15}$ Nanowires as Conductive Carbon-Free Material for Electrocatalysis

Chunyong He,1† Shiyong Chang,1,2† Xiangdong Huang,2* Qingquan Wang,2 Ao Mei2 and Pei Kang Shen1,*

1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.

2 Automotive Engineering Institute, Guangzhou Automobile Group Co., Ltd, Guangzhou, 510640, PR China.

$†$These authors contributed equally to this work.

*e-mail: stsspk@mail.sysu.edu.cn; huangxd@gaei.cn.
Schematic diagram of apparatus

Figure S1 (A) Schematic diagram of the experimental apparatus for growth of Ti$_8$O$_{15}$ NWs, the temperature decreases gradually from centre to the right, giving two temperature regions: high (H.T.) and low temperature (L.T.), (B) Digital pictures of Ti substrate before and after experiment.

Since no catalyst was used in the process of the growth of the Ti$_8$O$_{15}$ NWs, suggesting that the growth mechanism of the KTi$_8$O$_{16}$ NWs may not dominated by the vapor-liquid-solid (VLS) mechanism, which is is frequently employed to explain the growth of nanowires and nanoarchitectures.S1,S2 Instead, we propose a possible growth mechanism for the formation of the KTi$_8$O$_{16}$ NWs based on the modified vapor-solid (VS) mechanism.S3,S4 A two-step path reaction process was proposed in our synthesis process of KTi$_8$O$_{16}$ NWs, showing as follow:

(a) The TiO$_2$ powders in the quartz boat at the center of the tube (the high temperature
region, H.T.) were reduced to form H₂O (g):

\[TiO_2 + H_2 \xrightarrow{H.T.} TiO_H + H_2O(g) \]

(b) The H₂O (g) reacted with the Ti on the Ti substrate (the low temperature region, L.T.) to form oxygen-deficient tetragonal phase of KTi₈O₁₆ NWs in H₂ atmosphere.

\[H_2O(g) + Ti + H_2(g) \xrightarrow{L.T.} Ti_8O_{15}(nanowires) + H_2(g) \]

Additional experimental data

Calculation Details

![Figure S2](image)

Figure S2 Supercell models of (A) anatase TiO₂, (B) the site of oxygen vacancy,(C) Magneli phase Ti₈O₁₅.

Anatase TiO₂ has a tetragonal structure with lattice parameters \(a = b = 3.776 \text{ Å} \), \(c = 9.486 \text{ Å} \). To calculate anatase TiO₂, a 2×2×1 supercell was constructed with 16 Ti and 32 O atoms, as shown in Figure 1(A). The calculate modle of Ti₈O₁₅ was constructed from removed two O atoms from anatase TiO₂ supercell and optimized the atomic structure, as shown in Figures 1(B)–1(C).
Figure S3 Energy-band diagram, total density of states and partial density of states of anatase TiO$_2$(A,B,C) and Magneli phase Ti$_8$O$_{15}$(D,E,F).

First-principles calculations were performed using the CASTEP module in Materials Studio 5.0 developed by Accelrys Software Inc. Electron-ion interactions were modeled using ultrasoft pseudopotentials in the Vanderbilt form. The states Ti: 3s2 3p6 3d2 4s2 and O:2s2 2p4 were treated as valence states. The wave functions of the valence electrons were expanded through a plane wave basis-set and the cut off energy was selected as 500 eV. The Monkhorst-Pack scheme Kpoints grid sampling was set at $7 \times 7 \times 7$ in the supercells. The convergence threshold for self-consistent iterations was set at 5×10^{-7} eV. The lattice parameters and atomic positions for each supercell system were first optimized using the generalized gradient approximation (GGA) together with the method. The optimization parameters were set as follows: energy change = 5×10^{-6} eV/atom, maximum force = 0.01 eV/Å, maximum stress = 0.02 GPa, and maximum displacement tolerance = 0.005 Å.
The electronic structure of magneli phase titanium suboxide Ti$_8$O$_{15}$ are studied by using the plane-wave ultrasoft pseudopotential method based on the density functional theory. The band structure reveals that the energy band gap of Ti$_8$O$_{15}$ is reduced a lot compared with that of anatase TiO$_2$, which is due to the fact that O2p, Ti3p and Ti3d of Ti$_8$O$_{15}$ shift toward the left compared with those of TiO$_2$, and a new electron energy level formed by the redundant electrons of Ti3d and Ti3p of Ti$_8$O$_{15}$ due to the lack of oxygen atom in lattic. The results from density of states (DOS) analysis show that electron distribution near the Fermi level of Ti$_8$O$_{15}$ is different from that of anatase TiO$_2$, contribution of O2p to Fermi level decrease and that of Ti3d increase, compared with anatase TiO$_2$ which only has high electrical conductivity, because its narrow forbidden band width results in the Transitions of Electron from the valence band to the conduction band energy required to reduce.

Conductivity Measurements

To measure the conductivity under conditions of low energy and bias voltages, a voltage ramp of 0–0.05 V was applied across split electrodes in steps of 0.025 V for two-probe measurements using a source meter (Keithley 2400). For each measurement, after allowing the exponential decay of the transient ionic current, the steady-state electronic current for each voltage was measured every second over a minimum period of 100 s using a Labview data acquisition program (National Instruments). The time-averaged current for each applied voltage was calculated to create the current–voltage (I–V) characteristics. For the two-probe measurement, the
linearity of the I–V characteristics was maintained by applying an appropriate low voltage/current. The dissipative power was kept under 1×10^{26} W to eliminate self-heating effects.

Figure S4. (A) Schematic diagram of the conductivity measuring experiment, (B) SEM image of Ti$_8$O$_{15}$ nanowire electrode, (C) I–V characteristics of a single Ti$_8$O$_{15}$ nanowire at room temperature.
Microscopic morphological characteristics

Figure S5. SEM image of club-shaped Ti$_8$O$_{15}$ nanoparticles, which were formed in the initial stage of the growth of Ti$_8$O$_{15}$ NWs.
Electrochemical performance

![Cyclic voltammograms of Pt/C and Pt/Ti$_8$O$_{15}$ NWs in 0.5mol L$^{-1}$ H$_2$SO$_4$](image)

Figure S6. Cyclic voltammograms of Pt/C and Pt/Ti$_8$O$_{15}$ NWs in 0.5mol L$^{-1}$ H$_2$SO$_4$ with the scan rate of 20 mV s$^{-1}$ at 30°C

Microscopic morphological characteristics

![TEM images of Pt/Ti$_8$O$_{15}$ NWs after 6,000 cycles](image)

Figure S6. (A,B)TEM images of Pt/Ti$_8$O$_{15}$ NWs after 6,000 cycles.
References

