Supplement Information

Broadband Slow Light in One – Dimensional Logically Combined Photonic Crystals

G. Alagappan* and C. E. Png

Department of Electronics and Photonics, Institute of High Performance Computing, Agency for Science, Technology, and Research (A-STAR), Fusionopolis, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632

*Corresponding author: gandhi@ihpc.a-star.edu.sg
Bloch mode decomposition technique

Here, we will describe the details of the Bloch mode decomposition technique. This technique is used to calculate the Bloch mode expansion coefficient, a_n. [see Figure 2(e)]. The modes of PC1 are Bloch modes. Each of the Bloch mode can be identified with a pair of indices that denote the band index, n, and the wavevector, k. The Bloch mode, $\phi_{n,k}(x)$, of PC1 with frequency $\omega_{n,k}$, satisfy the 1D time – independent Maxwell’s equation,

$$\left[\frac{d^2}{dx^2} + \frac{\omega_{n,k}^2}{c^2} \epsilon_i(x)\right] \phi_{n,k}(x) = 0 \quad [S1],$$

where $\epsilon_i(x)$ is the dielectric function of PC1. The Bloch modes of PC1 obey the orthogonalization condition,

$$\int_{-a/2}^{a/2} \phi_{m,k}^*(x) \phi_{n,k}(x) dx = \delta_{mm} \delta_{kk}. \quad [S2].$$

Let us expand the electric field, $E(x)$, in the LCPC using the complete set of PC1’s Bloch modes:

$$E(x) = \sum_{n,k} a_{n,k} \phi_{n,k}(x) \quad [S3].$$

This electric field obeys the 1D time – independent Maxwell’s equation,

$$\left[\frac{d^2}{dx^2} + \frac{\omega^2}{c^2} \epsilon(x)\right] E(x) = 0 \quad [S4],$$

where $\epsilon(x)$ is the dielectric function of the LCPC. Expressing $\epsilon(x) = \epsilon_i(x) + \epsilon_p(x)$, and using Eqns. S1 – S3, we can transform Eqn. S4, into a system of linear equations,
\[\frac{1}{a_s} \sum_{n,k} a_{n,k} \int_{-a_s/2}^{a_s/2} \phi_{m,k}^* (x) e_p (x) \phi_{n,k} (x) dx = \left(\frac{\omega_{m,k}^2}{\omega^2} - 1 \right) a_{m,k}. \quad [S5]. \]

Writing \(\frac{1}{a_s} \int_{-a_s/2}^{a_s/2} \phi_{m,k}^* (x) e_p (x) \phi_{n,k} (x) dx \) as \(\langle \phi_{m,k}^* | e_p | \phi_{n,k} \rangle \), and re-arranging Eqn. S5, we arrive at the following symmetrical eigenvalue problem,

\[\sum_{n,k} \langle \phi_{m,k}^* | e_p | \phi_{n,k} \rangle + \delta_{m,n,k',m'} [a_{n,k} \omega_{n,k}] = \frac{c^2}{\omega^2} a_{m,k} \omega_{m,k}. \quad [S6], \]

with the eigenvalues \(c^2 / \omega^2 \).

Before proceeding, let us examine the term, \(\langle \phi_{m,k}^* | e_p | \phi_{n,k} \rangle \), in Eqn. S6. This term describes the coupling of PC1’s Bloch mode due to the perturbation, \(e_p (x) \). Since, the period of \(e_p (x) \) is equal to \(a_s = Ra \), the conservation of the translational symmetry requires \(k - k' \) to be multiples of \(g = 2\pi/a_s = 2\pi/Ra \). This means, different Bloch modes of PC1 will couple to each other, only if their wavevectors differ by multiples of \(g \). [i.e., \(\langle \phi_{m,k}^* | e_p | \phi_{n,k} \rangle \neq 0 \), only when \(k - k' \) is a multiple of \(g \)]. At such, it is useful to consider a folded band structure of PC1 [see the main text for the details]. In the folded band structure, the wavevectors of the adjacent bands differ exactly by \(g \).

For a given wavevector, \(k \), within the first BZ of the LCPC, the Bloch modes in the same folded cannot couple to each other. Only modes with the same \(k \), but in different folded bands can couple. Therefore, for a given \(k \), we can re-write Eqn. S6 using a single index subscript,

\[\sum_{n} \langle \phi_{m,k}^* | e_p | \phi_{n} \rangle + \delta_{m,n} [a_{n} \omega_{n}] = \frac{c^2}{\omega^2} a_{m} \omega_{m}. \quad [S7]. \]
Here, \(n \) is the index of the folded band. Eqn. S7 can be written in a matrix form as
\[
\hat{B} \mathbf{v} = \left[c^2 / \omega^2 \right] \mathbf{v},
\]
where \(\mathbf{v} = [a, a_1, a_2, \ldots] \). Inverting this matrix equation we have,
\[
\hat{B}^{-1} \mathbf{v} = \left[\omega^2 / c^2 \right] \mathbf{v}
\]
[S8].

Solving the eigenvalue problem in Eqn. S8, the expansion coefficients \([a_n] \) can be found. One can also use Eqn. 8 to obtain the band structure of the LCPC. Please take note that, if we express both \(\phi_n \) and \(\varepsilon_p \) in the plane wave basis (i.e., using a Fourier series), then Eqn. S8 will revert to the standard equations that describes the well-known plane wave expansion technique [17]. However, the information on \(a_n \) will be lost in the plane wave basis.