Supplementary Information for

Anisotropic Conductive Films Based on Highly Aligned Polyimide Fibers Containing Hybrid Materials of Graphene Nanoribbons and Carbon Nanotubes

Mingkai Liu,ab Yifeng Du,a Yue-E Miao,a Qianwei Ding,a Sixin He,a Weng Weei Tjiu,c Jisheng Panc and Tianxi Liub

a State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China. Fax: +86-21-65640293; Tel: +86-21-55664197; E-mail: txliu@fudan.edu.cn

b School of Chemistry and Chemical Engineering and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China

Figure S1. SEM images of (a) pristine CNTs and (b) GNR/CNT hybrid.
Figure S2. FTIR spectra of (a) pristine CNTs, (b) oxidized GNR/CNT and (c) GNR/CNT hybrid.
Figure S3. Digital picture showing the dispersion stability of (a) pristine CNTs, (b) oxidized GNR/CNT hybrid, (c) GNR/CNT hybrid in water, as well as GNR/CNT hybrid in DMAc.
Figure S4. TEM image of single PI-GNR/CNT composite fiber (9 wt% GNR/CNT hybrid) at high magnification.
Figure S5. Digital photograph of flexible PI-GNR/CNT (9 wt %) composite film upon bending.