Electronic Supplementary Information

Nano-thermometer with Thermo-sensitive Polymer Grafted USPIOs behaving as Positive Contrast Agents in low-field MRI

Adeline Hannecart, a Dimitri Stanicki, a Luce Vander Elst, a,b Robert N. Muller, a,b Sébastien Lecommandoux, a Julie Thévenot, a Colin Bonduelle, a Aurélien Trotier, d Philippe Massot, d Sylvain Miraux, d Olivier Sandre, a,* and Sophie Laurent, a,*

a) Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau B-7000 Mons, Belgium. Fax: +32-65-373520; Tel: +32-65-373525; E-mail: sophie.laurent@umons.ac.be
b) Center for Microscopy and Molecular Imaging, 8 rue Adrienne Bolland, B-6041 Charleroi, Belgium
c) Laboratoire de Chimie des Polymères Organiques, UMR5629 CNRS / Université de Bordeaux, ENSCBP 16 avenue Pey Berland F-33607 Pessac, France. Fax: +33-5-4000-8487; Tel: +33-5-4000-3695; E-mail: olivier.sandre@enscbp.fr
d) Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS / Université de Bordeaux 146, rue Léo Saignat, F-33076, Bordeaux France

Fig. S1 a) 500 MHz 1H NMR spectra of Jeffamine® M-2005 in D2O (30 mg/ml) at increasing temperatures (10, 15, 20, 25, 30, and 35°C); b) 500 MHz 1H NMR spectra of Jeffamine® M-2070 in D2O (30 mg/ml) at increasing temperatures (35, 40, 50, 60, 65, 70, 75, 80, and 85°C).
Fig. S2 FT-IR spectra of iron oxide nanoparticles obtained by coprecipitation (a) and of iron oxide nanoparticles coated with TEPSA (b).
Fig. S3 Thermogravimetric analyses (TGA) of USPIOs silanized by TEPSA (red curve), and after coupling with Jeffamine® M-2005 (green curve) and Jeffamine® M-2070 (blue curve). The graphs are normalized either by the dry weight after the plateau at 120°C (a) or by the burnt weight after the treatment at 600°C under air (b), enabling to subtract the silane content from the total organics to get the polymer weight % relatively to iron oxide, see Equation (4) in the text.
Fig. S4 a) Difference between the normalized FT-IR spectra of USPIOs coated with TEPSA before and after grafting of Jeffamine® M-2005, b) and spectrum of Jeffamine® M-2005 alone.
Fig. S5 a) Difference between the normalized FT-IR spectra of USPIOs coated with TEPSA before and after grafting of Jeffamine®, M-2070, b) and spectrum of Jeffamine® M-2070 alone.
Fig. S6 NMRD profiles of the longitudinal relaxivity vs. proton Larmor frequency for a) TEPSA-coated USPIOs, and b) USPIOs grafted with Jeffamine® M-2070 as a function of temperature.

Fig. S7 a) Outer Sphere radius R_{NMR} (nm) and b) saturation magnetization M_s (A·m²/kg) vs. temperature deduced by fitting the NMRD profiles for USPIOs coated by Jeffamine® M-2070 (green markers) and TEPSA only (purple markers).
Fig. S8 Longitudinal r_1 (a, c, e, g) and transverse r_2 (b, d, f, h) relaxivities of USPIOs grafted with Jeffamine® M-2005, normalized by the corresponding r_1 or r_2 of TEPSA-coated USPIOs, as functions of temperature from 10 to 50°C, for clinically relevant frequencies: 8.25 MHz (a, b), 20 MHz (c, d), 60 MHz (e, f), and 300 MHz (g, h). The vertical dotted lines show the position of the LCST of Jeffamine® M-2005, concomitant with an inflection of the curves of both the r_1 and r_2 relaxivities vs. temperature.