Supplementary Information

Chemically doped three-dimensional porous graphene monoliths for high-performance flexible field emitters

Ho Young Kim,ab Sooyeon Jeong,c Seung Yol Jeong,c Kang-Jun Baeg,a Joong Tark Han,a Mun Seok Jeong,*b Geon-Woong Lee* and Hee Jin Jeong,*ac

aNano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 642-120, South Korea. E-mail: gwleephd@keri.re.kr

bCenter for Integrated Nanostructure Physics, Institute for Basic Science, Department of Energy Science, Sungkyunkwan University, Suwon 440-746, South Korea. E-mail: mjeong@skku.edu

cMultidimensional Nanomaterials Research Group, Korea Electrotechnology Research Institute (KERI), Changwon 642-120, South Korea. E-mail: wavicle11@keri.re.kr
Fig. S1 XPS spectra of (a) the Au-doped and (b) Al-doped 3D rGO emitters, respectively. The Au\(^{3+}\) was spontaneously reduced upon acceptance of electrons from the graphene, resulted in the Au\(^0\) as a dominant Au species due to the higher reduction potential for the Au\(^{3+}\) compared to the rGO. In contrast, the rGO easily accepted electrons from Al\(^0\) due to the negative relative reduction potential from Al to rGO, resulted in the Al\(^{3+}\) as a dominant Al species.
Fig. S2 SEM image of (a) the undoped, (b) Au-doped, and (c) Al-doped 3D rGO emitters, respectively. The scale bars indicate 200 μm.