Electronic Supplementary Information 10

Non-identical Electronic Characters of the Internucleotidic Phosphates in RNA Modulate the Chemical Reactivity of the Phosphodiester Bonds

Jharna Barman¹, Sandipta Acharya¹, Chuanzheng Zhou¹, Subhrangsu Chatterjee¹, Åke Engström², and Jyoti Chattopadhyaya¹*

¹Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
²Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden

jyoti@boc.uu.se

Table of Content:

Figure S15F. Panels (f1) – (f7) show the RP-Hplc and SMART™ RP-Hplc profiles at ½, 2, 3, 4, 8, 15, 27 of alkali digestion of N¹-Me-G containing heptamer . 5'-r(CACG^MeAAC)-3' (7c). p. S2–S14
Figure S15(f1): RP-Hplc analysis of alkaline Hydrolysis products of 5′-r(CACGMeAAC)-3′ (7c) [after digestion for 0.5h at pH 12.5 using 0.03N NaOH/ 20°C, followed by quenching with 0.03 N aq. acetic acid]. For Hplc conditions see the experimental section in the text.
Figure S15(f1): SMART™ RP-Hplc analysis of the alkaline hydrolysis products co-eluted at $R_T = 25.93$ min and $R_T = 26.48$ min in Figure S15(f1) for (7c). Hplc conditions: Jupiter 5 µm C18 300Å column with 150 x 2 mm dimension. Gradient: linear gradient starting from 0% B Buffer (50% CH$_3$CN in 0.1M TEAA) + 100% A Buffer (0.1M TEAA) to 20% B Buffer + 80% A Buffer in 45 minutes. Flow rate: 100 µl min$^{-1}$.

<table>
<thead>
<tr>
<th>No</th>
<th>Ret (min)</th>
<th>Peak start (min)</th>
<th>Peak end (min)</th>
<th>Dur (min)</th>
<th>Area (min*mAU)</th>
<th>Height (mAU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.73</td>
<td>25.35</td>
<td>25.96</td>
<td>0.63</td>
<td>0.4344</td>
<td>1.073</td>
</tr>
<tr>
<td>2</td>
<td>26.76</td>
<td>26.28</td>
<td>26.96</td>
<td>0.69</td>
<td>0.7534</td>
<td>1.624</td>
</tr>
<tr>
<td>3</td>
<td>28.41</td>
<td>27.60</td>
<td>28.77</td>
<td>1.19</td>
<td>10.5481</td>
<td>18.307</td>
</tr>
<tr>
<td>4</td>
<td>30.69</td>
<td>28.77</td>
<td>31.61</td>
<td>2.85</td>
<td>203.0332</td>
<td>353.293</td>
</tr>
</tbody>
</table>
Figure S15(f2): RP-Hplc analysis of alkaline Hydrolysis products of 5'-r(CACG_{Me}AAC)-3' (7c) [after digestion for 2h at pH 12.5 using 0.03N NaOH/ 20°C, followed by quenching with 0.03 N aq. acetic acid]. For Hplc conditions see the experimental section in the text.
Figure S15(f2): SMART™ RP-Hplc analysis of the alkaline hydrolysis products co-eluted at $R_T = 26.05 \text{ min}$ and $R_T = 26.60 \text{ min}$ in Figure S15(f2) for (7c). Hplc conditions: Jupiter 5 µm C18 300Å column with 150 x 2 mm dimension. Gradient: linear gradient starting from 0% B Buffer (50% CH$_3$CN in 0.1M TEAA) + 100% A Buffer (0.1M TEAA) to 20% B Buffer + 80% A Buffer in 45 minutes. Flow rate: 100 µl min$^{-1}$.

<table>
<thead>
<tr>
<th>No</th>
<th>Ret (min)</th>
<th>Peak start (min)</th>
<th>Peak end (min)</th>
<th>Dur (min)</th>
<th>Area (min*mAU)</th>
<th>Height (mAU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.65</td>
<td>25.31</td>
<td>25.81</td>
<td>0.52</td>
<td>0.0905</td>
<td>0.270</td>
</tr>
<tr>
<td>2</td>
<td>26.63</td>
<td>25.96</td>
<td>26.96</td>
<td>1.01</td>
<td>2.9335</td>
<td>4.993</td>
</tr>
<tr>
<td>3</td>
<td>28.29</td>
<td>27.45</td>
<td>28.63</td>
<td>1.19</td>
<td>7.7175</td>
<td>13.052</td>
</tr>
<tr>
<td>4</td>
<td>30.61</td>
<td>28.85</td>
<td>31.25</td>
<td>2.41</td>
<td>68.6909</td>
<td>114.980</td>
</tr>
</tbody>
</table>
Figure S15(f3): RP-Hplc analysis of alkaline Hydrolysis products of 5'-r(CACG^{Me}AAC)-3' (7c) [after digestion for 3h at pH 12.5 using 0.03N NaOH/ 20°C, followed by quenching with 0.03 N aq. acetic acid]. For Hplc conditions see the experimental section in the text.
Figure S15(f3): SMART™ RP-Hplc analysis of the alkaline hydrolysis products co-eluted at R_t = 26.12 min and R_t = 26.65 min in Figure S15(f3) for (7c). Hplc conditions: Jupiter 5 µm C18 300Å column with 150 x 2 mm dimension. Gradient: linear gradient starting from 0% B Buffer (50% CH$_3$CN in 0.1M TEAA) + 100% A Buffer (0.1M TEAA) to 20% B Buffer + 80% A Buffer in 45 minutes. Flow rate: 100 µl min$^{-1}$.

<table>
<thead>
<tr>
<th>No</th>
<th>Ret (min)</th>
<th>Peak start (min)</th>
<th>Peak end (min)</th>
<th>Dur (min)</th>
<th>Area (min*AU)</th>
<th>Height (mAU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.72</td>
<td>25.93</td>
<td>27.1</td>
<td>1.19</td>
<td>5.0776</td>
<td>8.142</td>
</tr>
<tr>
<td>2</td>
<td>28.36</td>
<td>27.11</td>
<td>28.76</td>
<td>1.67</td>
<td>17.6463</td>
<td>27.798</td>
</tr>
<tr>
<td>3</td>
<td>30.69</td>
<td>28.76</td>
<td>31.37</td>
<td>2.63</td>
<td>101.6836</td>
<td>169.047</td>
</tr>
</tbody>
</table>
Figure S15(f4): RP-Hplc analysis of alkaline Hydrolysis products of 5'-r(CACGMeAAC)-3' (7c) [after digestion for 4h at pH 12.5 using 0.03N NaOH/ 20°C, followed by quenching with 0.03 N aq. acetic acid]. For Hplc conditions see the experimental section in the text.
Figure S15(f4): SMART™ RP-Hplc analysis of the alkaline hydrolysis products co-eluted at $R_T = 26.05$ min and $R_T = 26.56$ min in Figure S15(f4) for (7c). Hplc conditions: Jupiter 5 µm C18 300Å column with 150 x 2 mm dimension. Gradient: linear gradient starting from 0% B Buffer (50% CH$_3$CN in 0.1M TEAA) + 100% A Buffer (0.1M TEAA) to 20% B Buffer + 80% A Buffer in 45 minutes. Flow rate: 100 µl min$^{-1}$.
Figure S15(f5): RP-Hplc analysis of alkaline Hydrolysis products of 5'-(r(CACG^{Me}AAC))-3' (7b) [after digestion for 8h at pH 12.5 using 0.03N NaOH/ 20°C, followed by quenching with 0.03 N aq. acetic acid]. For Hplc conditions see the experimental section in the text.
Figure S15(f5): SMART™ RP-Hplc analysis of the alkaline hydrolysis products co-eluted at $R_T=26.07 \text{ min}$ and $R_T=26.55 \text{ min}$ in Figure S15(f5) for (7c). Hplc conditions: Jupiter 5 μm C18 300Å column with 150 x 2 mm dimension. Gradient: linear gradient starting from 0% B Buffer (50% CH$_3$CN in 0.1M TEAA) + 100% A Buffer (0.1M TEAA) to 20% B Buffer + 80% A Buffer in 45 minutes. Flow rate: 100 μl min$^{-1}$.

<table>
<thead>
<tr>
<th>NO</th>
<th>Ret (min)</th>
<th>Peak start (min)</th>
<th>Peak end (min)</th>
<th>Dur (min)</th>
<th>Area (min*mAU)</th>
<th>Height (mAU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.51</td>
<td>24.20</td>
<td>24.75</td>
<td>0.56</td>
<td>0.0880</td>
<td>0.291</td>
</tr>
<tr>
<td>2</td>
<td>26.73</td>
<td>25.37</td>
<td>27.11</td>
<td>1.75</td>
<td>7.2993</td>
<td>11.314</td>
</tr>
<tr>
<td>3</td>
<td>28.37</td>
<td>27.31</td>
<td>28.91</td>
<td>1.61</td>
<td>19.3017</td>
<td>30.810</td>
</tr>
<tr>
<td>4</td>
<td>29.21</td>
<td>28.91</td>
<td>29.39</td>
<td>0.49</td>
<td>0.2244</td>
<td>0.558</td>
</tr>
<tr>
<td>5</td>
<td>30.72</td>
<td>29.39</td>
<td>31.45</td>
<td>2.08</td>
<td>52.5439</td>
<td>86.231</td>
</tr>
</tbody>
</table>
Figure S15(f6): RP-Hplc analysis of alkaline Hydrolysis products of 5'-r(CACG_{Me}AAC)-3' (7c) [after digestion for 15h at pH 12.5 using 0.03N NaOH/ 20°C, followed by quenching with 0.03 N aq. acetic acid]. For Hplc conditions see the experimental section in the text.
Figure S15(f6): SMART™ RP-Hplc analysis of the alkaline hydrolysis products co-eluted at $R_T = 26.09$ min and $R_T = 26.53$ min in Figure S15(f6) for (7c). Hplc conditions: Jupiter 5 µm C18 300Å column with 150 x 2 mm dimension. Gradient: linear gradient starting from 0% B Buffer (50% CH$_3$CN in 0.1M TEAA) + 100% A Buffer (0.1M TEAA) to 20% B Buffer + 80% A Buffer in 45 minutes. Flow rate: 100 µl min$^{-1}$.
Figure S15(f7): RP-Hplc analysis of alkaline Hydrolysis products of 5′-r(CACG^{Mc}AAC)-3′ (7c) [after digestion for 27h at pH 12.5 using 0.03N NaOH/ 20°C, followed by quenching with 0.03 N aq. acetic acid]. For Hplc conditions see the experimental section in the text.