Diphenylphosphinoyl chloride as a chlorinating agent – the selective double activation of 1,2-diols

David J. Fox,* Daniel Sejer Pedersen, Asger B. Petersen and Stuart Warren

University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, U.K.
EMAIL: djf34@cam.ac.uk

Supplementary Information

Experimental

For reactions conducted under anhydrous conditions glassware was dried overnight in an oven at 130 °C and was allowed to cool in a dessicator over anhydrous KOH. Anhydrous reactions were carried out under argon. Solvents were BOC standard reagent grade and distilled before use. Reagents/solvents for anhydrous reactions were dried as follows: THF was distilled from sodium wire with benzophenone as indicator. Dichloromethane, carbontetrachloride, hexane, acetonitrile, toluene, pyridine, N,N-dimethylformamide and triethylamine were dried and stored over 4 Å molecular sieves. Methanol was dried and stored over 3 Å molecular sieves. Sulfate buffer was prepared by dissolving 1.5 mol of Na₂SO₄ in 0.5 mol H₂SO₄ and adding water to give a final volume of 2000 cm³. Thin layer chromatography (TLC) was carried out on commercially available pre-coated glass plates (Merck 60 F₂₅₄). The quoted Rf values are rounded to the nearest 0.05. Dry Column Vacuum Chromatography (DCVC) was performed according to the published procedure.¹ ¹H, ¹³C, APT, DEPT, HMBC and COSY NMR spectra were recorded on Bruker Avance 400 (5 mm QNP probe) and Bruker Avance 500 (5 mm dual ¹³C-¹H cryo probe) Fourier transform spectrometers using an internal deuterium lock. ³¹P NMR Spectra were recorded on a Bruker Avance 400 (5 mm QNP probe) Fourier transform spectrometer using 85% H₃PO₄ as external standard. Solvents were used as internal standards when assigning NMR spectra (δH: CDCl₃ 7.26 ppm, DMSO-d₆ 2.50; δC: CDCl₃ 77.0 ppm, DMSO-d₆ 39.4 ppm). Spectra were processed using Mestre-C software.² J values are given in Hz and rounded to the nearest 0.5 Hz. LC-MS Was run on a Waters Alliance LC/MS system consisting of a Waters 2795 Separations Module, a Waters 2996 Photodiode Array Detector and a Waters Micromass ZQ on a C18 analytical Reverse Phase Supercosil™ ABZ+PLUS column (3.3 cm × 4.6mm, 3µm) using the following gradient: 0.00-0.70 min 100% solvent A, 0.70-4.20 min 100% solvent A to 100% solvent B, 4.20-7.70 min 100% solvent B, 7.70-8.00 min 100% solvent B to 100% solvent A (solvent A: 10 mM ammonium acetate in water containing 0.1% formic acid; solvent B: 95% acetonitrile in water) with a flow rate of 1 cm³/min. EI and LSIMS mass spectra were recorded on a Kratos concept 1H double focusing magnetic sector instrument using a MACH 3 data system. +ESI mass spectra were recorded using a Bruker Bio-Apex II FT-ICR instrument or a Micromass Q-Tof 1 machine. Microanalyses were carried out on a CE440 Elemental Analyser from Exeter Analytical, INC. The calculated values were adjusted for residual solvents. Melting points were measured on a microscope hot stage melting point apparatus (C. Reichert Optische Werke AG) and are uncorrected. Infra-red spectra were recorded using a Perkin Elmer Spectrum One (FT-IR) spectrometer with a universal ATR sampling accessory. Optical rotations were recorded on a Perkin Elmer 241 polarimeter using the sodium D line (589 nm) at 22 °C
and are given in units of 10⁻¹ deg dm² g⁻¹. X-ray Crystallographic Data was measured on a Nonius Kappa CCD diffractometer at 180(2) K.

(4R,5S)-5-Chloro-4-diphenylphosphinoyloxy-1,5-diphenyl-pentan-1-one 5 and (4R,5R)-4,5-bisdiphenylphosphinoyloxy-1,5-diphenyl-pentan-1-one 9: diol 1 (0.50 g, 1.85 mmol) was dissolved in anhydrous pyridine (10 cm³) and diphenylphosphinoyl chloride (1.75 g, 7.40 mmol) was added. The reaction mixture was stirred under argon for 14 hours and transferred to a separatory funnel with water (20 cm³) and extracted with ethyl acetate (50 + 2 cm³). The combined organic phases were extracted with aqueous sulfate buffer (50 cm³), saturated aqueous NaHCO₃ (50 cm³), dried (Na₂SO₄), filtered and concentrated in vacuo to give a brown gum. The product was purified by DCVC [id 4 cm; 20 cm³ fractions; 0-100% EtOAc in hexanes (v/v) – 10% increments; 2.5-12.5% MeOH in EtOAc (v/v) – 2.5% increments; two fractions of each solvent mixture] to give 0.60 g (66%) of ketone 5 as a yellow amorphous solid and 46 mg (3%) of bis-phosphinate 9 as a yellow gum; 5: [α]²²⁰D +19.0 (c. 1.0, CHCl₃; Rf 0.65 (EtOAc); m/z (+ESI) found: MH⁺, 489.1377. (C₂₉H₂₇ClO₃P requires M, 489.1386); IR νmax(CHCl₃)/cm⁻¹ 1684 (C=O), 1439 (P-Ph) and 1223 (P=O); ¹H NMR (500 MHz; CDCl₃) δ 7.87-7.75 (2H, m, ortho-PhP and/or ortho-PhC=O), 7.75-7.71 (4H, m, ortho-PhP and/or ortho-Ph=O), 7.55-7.47 (3H, m, meta-PhP and para-PhC=O), 7.45-7.27 (13H, m, meta-PhP, meta-PhC=O and ortho-, meta- and para-PhC), 5.20 (1H, d, J 4.5, CHPh), 4.87 (1H, ddt, J 9.0, 4.5 and 2.5, CHCHPh), 3.05 (1H, ddd, J 18.0, 9.5 and 5.0, CH₂H₃C=O), 2.94 (1H, ddt, J 18.0, 9.5 and 6.0, CH₂H₅C=O), 2.30 (1H, ddt, J 14.5, 9.0 and 5.0, CH₂H₃CH₂C=O) and 2.17-2.10 (1H, m, CH₂H₅CH₂C=O); ³¹P NMR (162 MHz; CDCl₃) δ 32.7; ¹³C NMR (126 MHz; CDCl₃) δ 198.8 (C₁), 137.0, 136.6 (ips-o-PhC=O and ipso-PhCH), 132.9 (para-PhC=O), 132.3 (×2) (2 × d, J 2.5 and 3.0, para-PhP), 131.7 (×2) (d, J 138.5, ipso-PhP and d, J 10.5, ortho-PhP), 131.6 (d, J 10.5, ortho-PhP), 131.3 (d, J 134.8, ipso-PhP), 128.6 (d, J 13.5, meta-PhP), 128.6 (d, J 13.5, meta-PhP), 128.5 (×2), 128.4, 128.0, 127.9 (ortho-, meta- and para-PhCH and meta- and para-PhC=O), 78.5 (d, J 6.5, C₄), 65.8 (d, J 4.0, C₅), 34.4 (C₂) and 24.3 (d, J 3.5, C₃); (Found: C, 68.51; H, 5.31. C₂₉H₂₇ClO₃P·1 H₂O requires C, 68.71; H, 5.57). 9: [α]²²⁰D +8.1 (c. 1.0, CHCl₃; Rf 0.35 (EtOAc); m/z (+ESI) found: MH⁺, 671.2124. (C₄₁H₃₇O₅P₂ requires M, 671.2116); IR νmax(CHCl₃)/cm⁻¹ 1684 (C=O), 1439 (P-Ph) and 1222 (P=O); ¹H NMR (500 MHz; CDCl₃) δ 7.84-7.76 (4H, m, Ph), 7.73-7.71 (2H, m, Ph), 7.67-7.63 (2H, m, Ph), 7.54-7.44 (6H, m, Ph), 7.41-7.31 (8H, m, Ph), 7.24-7.15 (8H, m, Ph), 5.56 (1H, dd, J 9.5 and 6.0, CHPh), 4.95 (1H, ddt, J 8.5, 6.5 and 3.5, CHCHPh), 2.99 (1H, ddd, J 18.0, 9.5 and 6.0, CH₂H₅C=O), 2.92 (1H, ddd, J 18.0, 9.5 and 5.0, CH₂H₅C=O), 2.21-2.14 (1H, m, CH₂H₃CH₂C=O) and 1.80 (1H, ddd, J 13.0, 9.0, 8.0 and 5.5, CH₂H₅CH₂C=O); ³¹P NMR (162 MHz; CDCl₃) δ 32.4 and 32.3; ¹³C NMR (126 MHz; CDCl₃) δ 198.9 (C₁), 136.6 (ips-o-PhC=O), 136.2 (d, J 2.5, ipso-PhC), 132.8 (para-PhC=O), 132.0 (×3) (d, J 2.5, para-PhP, d, J 2.5, para-PhP and d, J 138.0, ipso-PhP), 131.9 (×2), 131.8 (×2), 131.7 (×3), 131.6 (×2), 131.5 (Ph), 131.3 (d, J 141.0, ipso-PhP), 130.8 (d, J 137.0, ipso-PhP), 130.9 (d, J 133.0, ipso-PhP), 128.5, 128.4 (×2), 128.3, 128.2 (×2), 128.1, 128.0, 127.9, 127.7 (Ph), 77.9 (t, J 5.5, C₅), 77.2 (t, J 6.0, C₄), 34.2 (C₂) and 25.2 (d, J 2.0, C₃).
tert-Butyl (4R,5S)-5-chloro-4-diphenylphosphinoyloxy-5-phenyl-pentanoate 6: diol\(^2\) 2 (0.21 g, 0.79 mmol) was dissolved in anhydrous pyridine (5 cm\(^3\)) and diphenylphosphinoyl chloride (0.61 cm\(^3\), 3.2 mmol) was added under argon. After 29 hours aqueous half-saturated NaHCO\(_3\) (20 cm\(^3\)) was added and the mixture extracted with ethyl acetate (3 × 20 cm\(^3\)). The combined organic phases were concentrated \textit{in vacuo} and the residue dissolved in dichloromethane (20 cm\(^3\)) and extracted with saturated aqueous NaHCO\(_3\) (50 cm\(^3\)). The organic phase was dried (Na\(_2\)SO\(_4\)), filtered and concentrated \textit{in vacuo} to give a yellow gum that was purified by DCVC [id 4 cm; 20 cm\(^3\) fractions; 4 × hexanes; 10-100% EtOAc in hexanes (v/v) – 10% increments; 3 × EtOAc] to give 0.32 g (83%) of phosphinate 6 as white needles.

\[\alpha\]\(^{22}\)D +18 (c. 1.0, CHCl\(_3\)); mp 68-69 °C (EtOAc, hexanes); \(R_f\) 0.30 (40% EtOAc in hexanes, v/v); m/z (+ESI) found: MNa\(^+\), 507.1454. (C\(_{27}\)H\(_{30}\)ClO\(_4\)PNa requires M, 507.1468); IR \(\nu_{\max} (CHCl\(_3\))/cm\(^{-1}\) 1726 (C=O), 1439 (P-Ph) and 1228 (P=O); 1H NMR (500 MHz; CDCl\(_3\)) \(\delta\) 7.82-7.78 (2H, m, \textit{ortho}-PhP), 7.71-7.67 (2H, m, \textit{ortho}-PhP), 7.55-7.50 (2H, m, \textit{para}-PhP), 7.47-7.40 (4H, m, \textit{meta}-PhP), 7.30-7.27 (5H, m, Ph), 5.14 (1H, d, \(J_{5.0}\), PhC\(_{2}\)H\(_3\)), 4.79-4.74 (1H, m, PhCHC\(_{2}\)H\(_3\)), 2.37-2.27 (1H, m, C\(_{a}\)H\(_{b}\)C=O), 2.25-2.16 (2H, m, CH\(_{a}\)H\(_{b}\)C=O and C\(_{a}\)H\(_{b}\)CH\(_2\)C=O), 1.97-1.89 (1H, m, CH\(_{a}\)H\(_{b}\)CH\(_2\)C=O) and 1.34 \[9\]H, \(s\), C(CH\(_3\))\(_3\); 31P NMR (162 MHz; CDCl\(_3\)) \(\delta\) 32.6; 13C NMR (126 MHz; CDCl\(_3\)) \(\delta\) 171.9 (C\(_1\)), 137.1 (ipso-Ph), 132.3 (d, \(J_{2.5}\)), 132.2 (d, 3.0) (2 × para-PhP), 131.7 (d, J 10.5), 131.6 (d, J 10.0) (2 × \textit{ortho}-PhP), 131.4 (×2) (d, J 139.0 and d, J 131.5), 128.6-128.4 (m, 2 × meta-PhP and 2 × Ph), 127.8 (para-Ph), 80.3 [C(CH\(_3\))\(_3\)], 78.2 (d, J 6.5, C4), 65.2 (d, J 4.0, C5), 30.8 (C2), 28.0 [C(CH\(_3\))\(_3\)] and 25.3 (d, J 3.5, C3); (Found: C, 66.86%; H, 6.25. C\(_{27}\)H\(_{30}\)ClO\(_4\)P requires C, 66.87%; H, 6.24%).

(1S,2R)-1-Chloro-1-phenyl-2-diphenylphosphinoyloxy-propane 7: to a stirred solution of diol\(^3\) 3 (1.23 g, 8.08 mmol) in pyridine (50 cm\(^3\)) under argon was added diphenylphosphinoyl chloride (4.38 cm\(^3\), 22.3 mmol) and the solution was stirred for 48 hours before it was quenched with half-saturated aqueous NaHCO\(_3\) (50 cm\(^3\)) and brine (50 cm\(^3\)). The mixture was extracted with EtOAc (80 cm\(^3\) + 50 cm\(^3\) + 20 cm\(^3\)) and the combined organic phases were evaporated \textit{in vacuo}. Purification by DCVC [id 4 cm; 20 cm\(^3\) fractions; 0-100% EtOAc in petrol ether (60-80 °C) (v/v) – 10% increments] gave chloride 7 (1.79 g, 60%) as a clear colourless oil; [\(\alpha\)]\(^{22}\)D +18.4 (c. 0.7, CHCl\(_3\)); \(R_f\) 0.40 [30% petrol ether (60-80 °C) in EtOAc, v/v]; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.76-7.70 (2H, m, \textit{ortho}-PhP), 7.59-7.53 (2H, m, \textit{ortho}-PhP), 7.48-7.24 (11H, m, Ph), 5.05 (1H, d, J 5.5, C\(_{2}\)H\(_3\)), 4.81 (1H, dq, J 9.0 and 6.0, CHO), 1.42 (d, 3H, J 6.0, CH\(_3\)); \(^31\)P NMR (162 MHz, CDCl\(_3\)) \(\delta\) 32.1; \(^13\)C NMR (126 MHz; CDCl\(_3\)) \(\delta\) 171.9 (C1), 137.1 (ipso-Ph), 132.3 (d, J 2.5), 132.2 (d, 3.0) (2 × para-PhP), 131.7 (d, J 10.5), 131.6 (d, J 10.0) (2 × \textit{ortho}-PhP), 131.4 (×2) (d, J 139.0 and d, J 131.5), 128.6-128.4 (m, 2 × meta-PhP and 2 × Ph), 127.8 (para-Ph), 80.3 [C(CH\(_3\))\(_3\)], 78.2 (d, J 6.5, C4), 65.2 (d, J 4.0, C5), 30.8 (C2), 28.0 [C(CH\(_3\))\(_3\)] and 25.3 (d, J 3.5, C3); (Found: C, 66.86; H, 6.25. C\(_{21}\)H\(_{20}\)O\(_2\)ClP requires C, 66.87%; H, 6.24%).

(1S,2R)-1-Chloro-1-phenyl-2-diphenylphosphinoyloxy-propane 7: to a stirred solution of diol\(^5\) 4 (1.23 g, 8.08 mmol) in pyridine (50 cm\(^3\)) under argon was added diphenylphosphinoyl chloride (4.38 cm\(^3\), 22.3 mmol) and the solution was stirred for 48 hours before it was quenched with half-saturated aqueous NaHCO\(_3\) (40 cm\(^3\)) and the combined organic phases were evaporated \textit{in vacuo}. The residue was dissolved in dichloromethane (50 cm\(^3\)) and
saturated aqueous NaHCO₃ (50 cm³), the organic phase dried with Na₂SO₄, filtered, and evaporated in vacuo. Purification by DCVC [id 4 cm; 20 cm³ fractions; 0-100% EtOAc in petrol ether (60-80 °C) (v/v) – 10% increments; 2 × EtOAc] gave chloride 8 (0.617 g, 71%). A sample was recrystallised from CHCl₃ : petrol ether (60-80 °C) to give a colourless crystalline solid; [α]D₂² +22.8 (c. 0.75, CHCl₃); mp 172–174 °C; Rf 0.40 [40% petrol ether (60-80 °C) in EtOAc, v/v]; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.44 (5H, m, Ph), 7.35-6.93 (15H, m, Ph), 5.73 (1H, dd, J 9.0, 6.5, CHO), 5.28 (1H, d, J 6.5, CHCl); ³¹P NMR (162 MHz, CDCl₃) δ 33.5; ¹³C NMR (101 MHz, CDCl₃) δ 137.3, 136.3 (d, J 2.0), 132.1 (d, J 3.0), 131.9 (d, J 3.0), 131.7 (d, J 10.5), 131.4 (d, J 138.5), 131.4 (d, J 10.5), 131.1 (d, J 135.5), 128.7, 128.5, 128.3, 128.3 (d, J 13.5), 128.1, 128.1 (d, J 13.5), 127.8, 80.0 (d, J 5.5), 65.5 (d, J 6.5); m/z (+ESI) found: MH⁺ 433.1124 (C₂₆H₂₃ClO₂P⁺ requires 433.1119); (found: C, 71.80%; H, 5.15%; C₂₆H₂₂ClO₂P 1.5 H₂O requires C, 71.54%; H, 5.17%).

(2R,3S)-Methyl 3-chloro-2-bis(diphenylphosphinoyloxy)-3-phenylpropanoate 11, (2R,3R)-methyl 2-chloro-3-bis(diphenylphosphinoyloxy)-3-phenylpropanoate 12 and (2S,3R)-methyl 2,3-bis(diphenylphosphinoyloxy)-3-phenylpropanoate 13: to a stirred solution of diol 10 (0.098 g, 0.5 mmol) in pyridine (5 cm³) under argon was added diphenylphosphinoyl chloride (0.38 cm³, 2.0 mmol) and the solution was stirred for 48 hours before it was quenched with half-saturated aqueous NaHCO₃ (10 cm³). The mixture was extracted with EtOAc (3 × 20 cm³) and the combined organic phases were evaporated in vacuo. The residue was dissolved in dichloromethane (25 cm³) and saturated aqueous NaHCO₃ (40 cm³), the organic phase dried with Na₂SO₄, filtered, and evaporated in vacuo. Purification by DCVC [id 4 cm; 20 cm³ fractions; 0-100% EtOAc in petrol ether (60-80 °C) (v/v) – 10% increments; then 5-20% MeOH in EtOAc (v/v) – 5% increments] gave bis-phosphinate 13 as a light yellow oil (0.073 g, 24%) and a mixture of chloro-phosphinates 11 and 12 (11:12 1:2.5 by ¹H NMR) (0.115 g, 56%). 11 and 12 ¹H NMR (400 MHz, CDCl₃) 7.80-7.22 (m, Ph, both isomers), 5.76 (1H, dd, J 9.5, 8.0, PhCHOP, minor isomer), 5.25 (1H, d, J 8.0, PhCHCl, major isomer), 5.17 (1H, dd, J 9.5, 8.0, POCHCO₂, major isomer), 4.75 (1H, dd, J 8.5 and 5.5, PhCO), 3.33 (3H, s, OCH₃ minor isomer) and 3.60 (3H, s, OCH₃ major isomer); m/z (+ESI) found: MH⁺ 435.1474 (C₂₃H₂₉O₄ClP⁺ requires 435.1492). A sample of bis-phosphinate 13 was recrystallised from CHCl₃ : petrol ether (60-80°C); [α]D₂² −12.0 (c. 0.43, CHCl₃); mp 145.5-147.7 °C; Rf 0.05 [40% petrol ether (60-80 °C) in EtOAc, v/v]; ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.75 (4H, m, Ph), 7.52-7.32 (12H, m, Ph), 7.25-7.09 (9H, m, Ph), 5.81 (1H, dd, J 9.5 and 5.5, CHPh), 5.10 (1H, dd, J 8.5 and 5.5, CHCO), 3.33 (3H, s, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ 35.2 and 33.3; ¹³C NMR (101 MHz, CDCl₃) δ 167.7, 135.3 (d, J 1.5), 132.3, 132.2 (×2), 132.1 (×2), 132.0 (×3), 131.9 (×2), 131.8 (×2), 131.7 (×2), 131.3, 130.5, 130.4 (×2), 129.9, 128.7, 128.4 (×2), 128.3 (×2), 128.2 (×3), 128.0, 127.2, 77.0 (t, J 26.0), 76.2 (t, J 25.0); m/z (+ESI) found: MH⁺ 597.1602 (C₃₄H₃₉O₃P₂⁺ requires 597.1590); (found: C, 67.89%; H, 5.10%; C₃₄H₃₉O₃P₂ 0.25 H₂O requires C, 67.94%; H, 5.11%).

(2R,3R)-Ethyl 2-chloro-3-(diphenylphosphinoyloxy)-4-methylpentanoate 15: to a stirred solution of diol 14 (0.600 g, 3.4 mmol) in pyridine (15 cm³) under argon was added diphenylphosphinoyl chloride...
(2.6 cm³, 14 mmol) and the solution was stirred for 48 hours before it was quenched with half-saturated aqueous NaHCO₃ (30 cm³). The mixture was extracted with EtOAc (3 × 40 cm³) and the combined organic phases were evaporated in vacuo. The residue was dissolved in CH₂Cl₂ (40 cm³) and saturated aqueous NaHCO₃ (60 cm³), the organic phase dried with Na₂SO₄, filtered, and evaporated in vacuo. Purification by DCVC [id 4 cm; 20 cm³ fractions; 0-100% EtOAc in petrol ether (60-80 °C) (v/v) – 10% increments; then 5-20% MeOH in EtOAc (v/v) – 5% increments] gave chloride 15 as colourless crystals (0.610 g, 45%); [α]ᵢ²²D −6.6 (c. 0.80, CHCl₃); mp 66-68 °C; Rᵣ 0.40 [40% petrol ether (60-80 °C) in EtOAc, v/v]; ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.74 (4H, m, Ph), 7.51-7.37 (6H, m, Ph), 4.90-4.82 (1H, m, CHOP), 4.58 (1H, d, J 6.5, CHCl), 3.96-3.78 (2H, m, CH₂), 2.27 (1H, dq, J 13.5 and 6.5, CHCH₃), 1.19-1.11 (3H, m, CH₃CH₂), 0.94 (3H, d, J 7.0, CH₂CH), 0.83 (3H, d, J 7.0, CH₂CH); ³¹P NMR (162 MHz, CDCl₃) δ 32.0; ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 132.2 (d, J 137.0 Hz), 132.1 (d, J 137.0), 132.1 (d, J 2.5), 131.5 (d, J 10.5), 128.4 (d, J 13.5), 80.4 (d, J 7.0), 62.2, 58.5 (d, J 3.5), 29.8 (d, J 3.5), 19.0, 17.0, 13.7; m/z (+ESI) found MH⁺ 395.1163 (C₂₀H₂₅ClO₄P⁺ requires 395.1174); (found: C, 60.71%; H, 6.08%; C₂₀H₂₄ClO₄P requires C, 60.84%; H, 6.13%).

(1'R,2'R)-1-Diphenylphosphinoyloxy-2-hydroxy-1,2-diphenylethane 16: to a stirred solution of diol 4 (0.214 g, 1.0 mmol) in pyridine (5 cm³) under argon was added diphenylphosphinoyl chloride (0.19 cm³, 1.0 mmol) and the solution was stirred for 48 hours before it was quenched with half-saturated aqueous NaHCO₃ (20 cm³). The mixture was extracted with EtOAc (2 × 30 + 20 cm³) and the combined organic phases were evaporated in vacuo. The residue was dissolved in dichloromethane (25 cm³) and saturated aqueous NaHCO₃ (40 cm³), the organic phase dried with Na₂SO₄, filtered, and evaporated in vacuo. Purification by DCVC [id 4 cm; 20 cm³ fractions; 0-100% EtOAc in petrol ether (60-80 °C) (v/v) – 10% increments] gave phosphinate 16 as a clear colourless oil (0.100 g, 24%). A sample of 16 was recrystallised from CHCl₃ : petrol ether (60-80 °C) (v/v) – 10% increments] gave phosphinate 16 as a clear colourless oil (0.100 g, 24%). A sample of 16 was recrystallised from CHCl₃ : petrol ether (60-80 °C) (v/v) – 10% increments] gave phosphinate 16 as a clear colourless oil (0.100 g, 24%).
extracted with sulfate buffer (20 cm³) and saturated aqueous NaHCO₃ (20 cm³). The organic phase was dried with Na₂SO₄, filtered, and evaporated in vacuo. Purification by DCVC [id 4 cm; 20 cm³ fractions; 0-100% EtOAc in petrol ether (60-80 °C) (v/v) – 10% increments; then 5-20% MeOH in EtOAc (v/v) – 10% increments] gave bis-phosphinate 17 as clear colourless oil (0.220 g, 36%); [α]²²D +53.2 (c. 0.95, CHCl₃); Rf 0.35 (EtOAc); 1H NMR (400 MHz, CDCl₃) δ 7.81-7.76 (4H, m, Ph), 7.55-7.49 (4H, m, Ph), 7.40-7.35 (2H, m, Ph), 7.28-7.23 (6H, m, Ph), 7.14-7.10 (4H, m, Ph), 7.02-6.88 (10H, m, Ph), 5.75-5.67 (2H, m, CΗOP); 31P NMR (162 MHz, CDCl₃) δ 32.5; 13C NMR (101 MHz, CDCl₃) δ 135.9 (d, J 1.5), 132.2, 132.0, 131.9 (×2), 131.8, 131.7 (×3), 131.6, 131.5 (d, J 140.0), 131.3 (d, J 133.5), 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 79.4 (t, J 6.0); m/z (ESI+) found: MH⁺ 615.1848 (C₃₈H₃₃O₄P₂⁺ requires 615.1849); (found: C, 73.46%; H, 5.27%; C₃₈H₃₂O₄P₂ 0.33 H₂O requires C, 73.54%; H, 5.31%).

(1R,2S)-2-Chloro-1,2-diphenyl-1-diphenylphosphinoyloxyethane 8: to a stirred solution of hydroxy-phosphinate 16 (60 mg, 0.145 mmol) in pyridine (5 cm³) under argon was added diphenylphosphinoyl chloride (0.58 mmol) and the solution was stirred for 48 hours before it was quenched with half-saturated aqueous NaHCO₃ (20 cm³). The mixture was extracted with EtOAc (3 × 20 cm³) and the combined organic phases were evaporated in vacuo. The residue was dissolved in dichloromethane (50 cm³) and saturated aqueous NaHCO₃ (50 cm³), the organic phase dried with Na₂SO₄, filtered, and evaporated in vacuo to give crude chloro-phosphinate 8 (>95% conversion by 1H NMR).

Reaction of diol 4 with Ph₂PCl₃ in pyridine: to a solution of Ph₂PCl (0.72 cm³, 4.0 mmol) in CCl₄ (20 cm³) under argon at −15 °C was added SO₂Cl₂ (0.32 cm³, 4.0 mmol) (dropwise), and the mixture was stirred for 2 hours at −15 to −10 °C. The solvent was removed in vacuo to give Ph₂PCl₃ as a white crystalline solid. The solid was dissolved in pyridine under argon and diol 4 (0.86 g, 4.0 mmol) was added. The reaction was stirred at ambient temperature for 48 hours. Evaporation of the pyridine gave a crude product containing diol 4, chloro-phosphinate 8 and hydroxy-phosphinate 16 in a 43:31:26 ratio (by 1H NMR).

(4R,5R)-5-Azido-1,5-diphenyl-4-diphenylphosphinoyloxy-pentan-1-one 21: chloride 5 (0.25 g, 0.51 mmol) was dissolved in anhydrous DMF (5 cm³). To the stirred solution, at room temperature under argon, sodium azide (40 mg, 0.62 mmol) was added and the reaction mixture heated to 120 °C. After 28 hours the reaction was transferred to a separatory funnel with water (25 cm³) and brine (10 cm³) and extracted with ethyl acetate (50 + 2 × 25 cm³). The combined organic phases were extracted with aqueous sulfate buffer (25 cm³), saturated aqueous NaHCO₃ (25 cm³), dried (Na₂SO₄), filtered and concentrated in vacuo to give a yellow gum. The product was purified by DCVC [id 4 cm; 20 cm³ fractions; 2 × hexanes, 10-100% EtOAc in hexanes (v/v) – 10% increments; 5 × EtOAc] to give 0.17 g (67%) of azide 21 as yellow needles. [α]²²D +62 (c. 1.2, CHCl₃); mp 91-92 °C (EtOAc, hexanes); Rf 0.35 (50% EtOAc in hexanes, v/v); m/z (+ESI) found: MNa⁺, 518.1619. (C₃₈H₃₂N₃O₃PNa requires M, 518.1609); IR νmax(CHCl₃)/cm⁻¹ 2103 (N₃), 1684 (C=O) 1439 (P-Ph) and 1224 (P=O); ¹H NMR (500
(1R,2R)-1-Azido-2-diphenylphosphinoyloxy-1-phenylpropane 22: to a stirred solution of chlorophosphinate 7 (0.370 g, 1.0 mmol) in DMF (20 cm³) under argon was added sodium azide (0.260 g, 4.0 mmol) and the mixture was stirred at 120 °C. After 48 hours heating was stopped, water (20 cm³) and brine (20 cm³) were added and the aqueous phase was extracted with EtOAc (3 × 25 cm³), the combined organic phases were extracted with sulfate buffer (25 cm³) followed by saturated aqueous NaHCO₃ (25 cm³), dried with Na₂SO₄, filtered, and evaporated in vacuo. Purification by DCVC [id 4 cm; 20 cm³ fractions; 0-100% EtOAc in petrol ether (60-80 °C) (v/v) – 10% increments] gave azido-phosphinate 22 as a clear light yellow oil (0.280 g, 74%); [α]D⁻⁹⁴.⁵ (c. 1.7, CHCl₃); Rf 0.30 [40% petrol ether (60-80 °C) in EtOAc, v/v]; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.72 (4H, m, Ph), 7.45-7.31 (6H, m, Ph), 7.30-7.19 (5H, m, Ph), 4.71-4.59 (2H, m, CH₂), 1.18 (3H, d, J 6.0, CH₃); ³¹P NMR (162 MHz, CDCl₃) δ 32.1; ¹³C NMR (101 MHz, CDCl₃) δ 135.7, 132.2 (d, J 139.5), 132.1 (d, J 3.0), 131.7 (d, J 10.5), 131.5 (d, J 10.0), 131.4 (d, J 136.0), 128.7 (s), 128.5 (d, J 13.0), 128.4 (d, J 13.5), 127.8, 74.9 (d, J 6.5), 70.5 (d, J 6.5), 19.0 (d, J 1.5); m/z (ESI+) found: MH⁺ 378.1374 (C₂₁H₂₁N₃O₂P⁺ requires 378.1366); (found: C, 65.43%; H, 5.36%; N, 10.79%; C₂₁H₂₀N₃O₂P 0.5 H₂O requires C, 65.28%; H, 5.48%; N, 10.88%).

(1R,2R)-2-Azido-1,2-diphenyl-1-(diphenylphosphinoyloxy)ethane 23: to a stirred solution of chlorophosphinate 8 (0.110 g, 0.25 mmol) in DMF (10 cm³) under argon was added sodium azide (0.066 g, 1.0 mmol) and the mixture was stirred at 120 °C. After 48 hours heating was stopped, water (10 cm³) and brine (10 cm³) were added and the aqueous phase was extracted with EtOAc (2 × 30 + 10 cm³), the combined organic phases were extracted with sulfate buffer (30 cm³), saturated aqueous NaHCO₃ (30 cm³), dried with Na₂SO₄, filtered, and evaporated in vacuo. Purification by DCVC [id 4 cm; 20 cm³ fractions; 0-100% EtOAc in petrol ether (60-80 °C) (v/v) – 10% increments] gave azido-phosphinate 23 as a clear light yellow oil (0.060 g, 55%); [α]D⁻⁴⁴.⁴ (c. 0.23, CHCl₃); Rf 0.35 [40% petrol ether (60-80 °C) in EtOAc, v/v]; ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.72 (2H, m, Ph), 7.61-7.41 (5H, m, Ph), 7.39-7.31 (1H, m, Ph), 5.48 (1H, dd, J 9.5 and 7.5, CH₃O), 4.97 (1H, d, J 7.5, CH₂N₃); ³¹P NMR (162 MHz, CDCl₃) δ 33.4; ¹³C NMR (101 MHz, CDCl₃) δ 136.3 (d, J 2.5), 135.0, 132.2 (d, J 3.0), 131.9 (d, J 3.0), 131.8 (d, J 10.5 Hz), 131.6 (d, J 139.5), 131.6 (d, J 10.5), 131.1 (d, J 134.5), 128.5, 128.4 (s), 128.2 (s), 128.0, 127.9, 127.5, 79.8 (d, J 6.0), 70.7 (d, J 5.5); m/z
(ESI+) found: MH+ 440.1541 (C26H23N3O2P+ requires 440.1522); (found: C, 69.72%; H, 5.07%; N, 8.87; C26H22N3O2P·2/3H2O requires C, 69.17%; H, 5.21%; N, 9.31%).

(4R,5R)-5-Azido-4-hydroxy-1,5-diphenylpentan-1-one 24: to a stirred solution of azido-phosphinate 21 (0.049 g, 0.10 mmol) in methanol (5 cm³) under argon was added potassium carbonate (0.055 g, 0.40 mmol). After stirring overnight the reaction mixture was evaporated to dryness and the residue purified by DCVC [id 4 cm; 20 cm³ fractions; 0-100% EtOAc in petrol ether (60-80 °C) (v/v) – 10% increments] to give azido-alcohol 24 as a clear colourless oil (22 mg, 75%); [α]22D −90.0 (c. 1.2, CHCl3); Rf 0.50 [50% petrol ether (60-80 °C) in EtOAc, v/v]; 1H NMR (500 MHz, CDCl3) δ 7.92-7.88 (2H, m, Ph), 7.54-7.49 (1H, m, Ph), 7.44-7.29 (7H, m, Ph), 4.40 (1H, d, J 7.5, CHN3), 3.85-3.78 (1H, m, CHOH), 3.18-3.01 (2H, m, CH2OH), 2.68 (1H, br s, OH), 1.78-1.68 (2H, m, CH2C=O); 13C NMR (126 MHz, CDCl3) δ 200.0, 136.7, 136.3, 133.1, 129.0, 128.8, 128.5, 128.4, 128.0, 127.8, 73.9, 72.1, 60.4, 34.6, 27.3; m/z (ESI+) found: MNa+ 318.1201 (C17H17N3O2Na+ requires 318.1213).

(1R,2R)-1-Azido-1-phenylpropan-2-ol 25: to a stirred solution of azido-phosphinate 22 (0.034 g, 0.10 mmol) in methanol (2 cm³) under argon was added potassium carbonate (0.028 g, 0.20 mmol). After stirring overnight the reaction mixture was evaporated to dryness and the residue purified by DCVC [id 4 cm; 20 cm³ fractions; 0-100% EtOAc in petrol ether (60-80 °C) (v/v) – 10% increments] to give azido-alcohol 25 as a clear light yellow oil (15 mg, 86%); [α]22D −167.8 (c. 1.0, CHCl3); Rf 0.40 [40% petrol ether (60-80 °C) in EtOAc, v/v]; 1H NMR (500 MHz, CDCl3) δ 7.42-7.27 (5H, m, Ph), 4.30 (1H, d, J 8.0, CHN3), 3.92-3.84 (1H, m, CHOH), 2.43 (1H, br s, OH), 1.03 (3H, d, J 6.5, CH3); 13C NMR (126 MHz, CDCl3) δ 136.6, 128.9, 128.7, 73.3, 70.8, 19.1; m/z (ESI+) found: MNa+ 200.0792 (C9H11N3ONa+ requires 200.7943).

(1R,2R)-2-Azido-1,2-diphenylethanol 26: to a stirred solution of azido-phosphinate 23 (0.060 g, 0.14 mmol) in methanol (3 cm³) under argon was added potassium carbonate (0.028 g, 0.20 mmol). After stirring overnight the reaction mixture was evaporated to dryness and the residue purified by DCVC [id 4 cm; 20 cm³ fractions; 0-100% EtOAc in petrol ether (60-80 °C) (v/v) – 10% increments] to give azido-alcohol 26 as a clear light yellow oil (19 mg, 57%); [α]22D −85.4 (c. 0.85, CHCl3); Rf 0.65 [40% petrol ether (60-80 °C) in EtOAc, v/v]; 1H NMR (500 MHz, CDCl3) δ 7.26-7.17 (6H, m, Ph), 7.11-7.05 (4H, m, Ph), 4.74 (1H, d, J 8.0, CHF), 4.68 (1H, d, J 7.5, CHF), 2.79 (1H, br s, OH); 13C NMR (126 MHz, CDCl3) δ 139.2, 136.0, 128.5, 128.2, 128.1 (×2), 127.8, 126.8, 78.0, 72.9; m/z (ESI+) found: MNa+ 262.0943 (C14H13N3ONa+ requires 262.0951). Data consistent with that previously reported.9

(2R,3R)-2,3-Diphenyloxirane 27: to a stirred solution of chloro-phosphinate 8 (0.200 g, 0.46 mmol) in methanol (10 cm³) under argon was added potassium carbonate (0.256 g, 1.85 mmol). After stirring overnight the reaction mixture was evaporated to dryness and the residue purified by DCVC [id 4 cm; 20 cm³ fractions; 0-100% EtOAc in petrol ether (60-80 °C) (v/v) – 10% increments] to give epoxide 27 as white crystals (0.078 g, 86%); [α]22D +250.8 (c. 0.85, CHCl3), (lit. [α]22D +239.2).10 NMR data
consistent with that previously reported. The 1H NMR spectrum of the crude product showed no trace of cis-epoxide product.

(1'R,2'S)-2-Azido-1,2-diphenylethanol 28: to a stirred solution of epoxide 27 (0.020 g, 0.10 mmol) in wet DMF (5 cm3) under argon was added sodium azide (0.054 g, 0.83 mmol) and the mixture was stirred at 100 °C. After 48 hours heating was stopped and half-saturated aqueous NaHCO$_3$ (20 cm3) was added. The mixture was extracted with EtOAc (3 × 20 cm3), the combined organic phases washed with sulfate buffer (20 cm3), saturated aqueous NaHCO$_3$ (20 cm3), dried with Na$_2$SO$_4$, filtered, and evaporated in vacuo. Purification by DCVC [id 4 cm; 20 cm3 fractions; 0-100% EtOAc in petrol ether (60-80 °C) (v/v) – 10% increments] gave azido-alcohol 28 as a clear light yellow oil 0.018 g (75%); $[\alpha]_{D}^{22} +67.8$ (c. 0.90, CHCl$_3$) (lit. $[\alpha]_{D}^{22} +44$); R_f 0.30 [40% petrol ether (60-80 °C) in EtOAc, v/v]; 1H NMR (500 MHz, CDCl$_3$) δ 7.38-7.22 (10H, m, Ph), 4.71-4.59 (1H, br d, J 6.5, CH$_2$OH), 4.68 (1H, d, J 7.0, CH$_2$N$_3$), 2.09 (1H, br d, J 2.5, OH); 13C NMR (126 MHz, CDCl$_3$) δ 139.6, 135.9, 128.7, 128.6, 128.4, 128.3, 128.0, 127.0, 77.0, 71.2; m/z (+ESI) found: MNa$^+$ 262.0939 (C$_{14}$H$_{13}$N$_3$ONa$^+$ requires 262.0951). NMR data consistent with that previously reported.

(1'R,2'R,1''S)-{2'-(1''-Hydroxy-1''-phenyl)-methyl}-cyclopropyl]-1-phenyl-methanone 30: to a stirred solution of chloro-phosphinate 5 (0.049 g, 0.10 mmol) in methanol (2 cm3) under argon was added potassium carbonate (0.038 g, 0.27 mmol) and after stirring for 48 hours the reaction mixture was evaporated in vacuo. Purification by DCVC [id 4 cm; 20 cm3 fractions; 0-100% EtOAc in petrol ether (60-80 °C) (v/v) – 10% increments] gave cyclopropane 30 as a white amorphous solid (0.020 g, 79%). Data consistent with that previously reported.

(1'R,2'R,1''S)-{2'-(1''-Azido-1''-phenyl)-methyl}-cyclopropyl]-1-phenyl-methanone 31 and (1'S,2'R,1''S)-{2'-(1''-azido-1''-phenyl)-methyl}-cyclopropyl]-1-phenyl-methanone 32: ketone 21 (0.13 g, 0.26 mmol) was dissolved in anhydrous THF (5 cm3) under argon and cooled to -78 °C. Freshly prepared LDA (0.27 mmol) in anhydrous THF (3 cm3) cooled to -78 °C was added by cannula and the reaction mixture stirred at -78 °C for 2 hours and then warmed to 0 °C. The reaction was maintained at 0 °C for 4 hours and then allowed to warm to room temperature overnight (16 hours). Saturated aqueous NH$_4$Cl (10 cm3) was added and the mixture transferred to a separatory funnel with water (10 cm3) and extracted with CH$_2$Cl$_2$ (3 × 25 cm3). The combined organic phases were dried with Na$_2$SO$_4$, filtered and concentrated in vacuo to give a yellow gum. The product was purified by DCVC [id 4 cm; 25 cm3 fractions; 0-50% EtOAc in hexanes – 5% increments; two fractions of each solvent mixture were collected] to give 34 mg (47%) of cyclopropanes 31 and 32 in a 9:1 ratio. An analytically pure sample of cyclopropane 31 was obtained. Analytical data for cyclopropane 31: $[\alpha]_{D}^{22} −100$ (c. 0.6, CHCl$_3$); R_f 0.35 (15% EtOAc in hexanes, v/v); m/z (+ESI) found: MNa$^+$, 300.1106. C$_{17}$H$_{15}$N$_3$ONa$^+$ requires M, 300.1106; IR ν_{max}(CHCl$_3$)/cm$^{-1}$ 2097 (N$_3$) and 1669 (C=O); 1H NMR (500 MHz, CDCl$_3$) δ 7.87-7.85 (2H, m, ortho-PhC=O), 7.55 (1H, tt, J 7.5 and 1.0, meta-PhC=O), 7.44-7.33 (5H, m, Ph), 4.40 (1H, d, J 6.5, PhCH)$_2$, 2.68 (1H, dt, J 8.5 and 4.5, CHC=O), 2.11 (1H, dt, J 8.5, 6.5 and 4.0,
CHCHN₃), 1.63 (1H, ddd, J 9.0, 5.0 and 4.0, CH₂H₁b), 1.32 (1H, ddd, J 8.5, 6.5 and 4.0, CH₂H₁a); ¹³C NMR (126 MHz; CDCl₃) δ 198.6 (C₁), 138.3, 137.5 (2 × ipso-Ph), 133.0, 128.9, 128.7, 128.5, 128.0, 127.1 (6 × Ph), 66.8 (C₁'''), 29.0 (C₂'''), 21.9 (C₁’) and 16.0 (C₃’). NMR data for cyclopropane 32 (extracted from NMR spectra of a mixture of 31 and 32. Peaks were overlapping in the aromatic region): H NMR (500 MHz; CDCl₃) δ 7.70-7.68 (2H, m, ortho-PhC=O), 7.44-7.33 (6H, m, Ph), 4.54 (1H, d, J 10.0, PhCH), 2.78 (1H, ddd, J 9.0, 7.5 and 5.5, CHC=O), 2.04 (1H, dtd, J 9.0, 8.5 and 7.0, CHCHN₃), 1.84 (1H, ddd, J 7.0, 5.5 and 4.5, CH₂H₁b), 1.44 (1H, td, J 8.0 and 4.5, CH₂H₁a); ¹³C NMR (126 MHz; CDCl₃) δ 198.8 (C₁), 139.2, 138.6 (2 × ipso-Ph), 132.7, 128.3, 127.8, 126.7, (4 × Ph, two phenyl peaks were overlapping with compound 31 peaks and could not be identified), 63.3 (C₁''), 30.2 (C₂''), 22.1 (C₁’) and 14.5 (C₃’).

Crystal data for chloro phosphinate 6: C₂₇H₃₀ClO₄P, M = 484.93, Orthorhombic, P₂₁₂₁₂₁, a = 5.8203(10), b = 11.4038(2), c = 37.8022(9) Å, α = 90°, β = 90°, γ = 90°, V = 2509.1(4) Å³, Z = 4, µ(Mo-Kα) = 0.247 mm⁻¹, 10165 reflections collected at 180(2) K using an Oxford Cryosystems Cryostream cooling apparatus, 4316 unique (Rint = 0.056); R₁ = 0.053, wR² = 0.127 [I > 2σ(I)]. Absolute structure parameter 0.02(10).

The structure was solved with SHELXS-97,¹³ and refined with SHELXL-97.¹³ CCDC reference number 600429. See http://www.rsc.org/suppdata for crystallographic data in .cif or other electronic format.

References